skip to main content


Title: Structure and function of LCI1: a plasma membrane CO 2 channel in the Chlamydomonas CO 2 concentrating mechanism
Abstract

Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organismChlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ciuptake systems. Fundamental to eukaryotic Ciuptake systems are Citransporters/channels located in membranes of various cell compartments, which together facilitate the movement of Cifrom the environment into the chloroplast, where primary CO2assimilation occurs. Two putative plasma membrane Citransporters, HLA3 and LCI1, are reportedly involved in active Ciuptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full‐length LCI1 membrane protein to reveal LCI1 structural characteristics, as well asin vivophysiological studies in an LCI1 loss‐of‐function mutant to reveal the Cispecies preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2uptake and that LCI1 likely functions as a plasma membrane CO2channel, possibly a gated channel.

 
more » « less
NSF-PAR ID:
10457489
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
102
Issue:
6
ISSN:
0960-7412
Page Range / eLocation ID:
p. 1107-1126
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    In response to high CO2environmental variability, green algae, such asChlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2concentration. Genetic and physiological studies demonstrated that at least three CO2physiological states, a high CO2(0.5–5% CO2), a low CO2(0.03–0.4% CO2) and a very low CO2(< 0.02% CO2) state, exist inChlamydomonas. To acclimate in the low and very low CO2states,Chlamydomonasinduces a sophisticated strategy known as a CO2‐concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2environments. Active uptake of Cifrom the environment is a fundamental aspect in theChlamydomonasCCM, and consists of CO2and HCO3uptake systems that play distinct roles in low and very low CO2acclimation states. LCI1, a putative plasma membrane Citransporter, has been linked through conditional overexpression to active Ciuptake. However, both the role of LCI1 in various CO2acclimation states and the species of Ci, HCO3or CO2, that LCI1 transports remain obscure. Here we report the impact of anLCI1loss‐of‐function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2uptake in low CO2, especially above air‐level CO2, and that any LCI1 role in very low CO2is minimal.

     
    more » « less
  2. Summary

    Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.

    Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.

    We isolatedcpkquintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23quintuple mutant plants, but not other analyzedcpkquadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9quintuple mutant plants.

    Our findings describe combinatorialcpkmutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response.

     
    more » « less
  3. Abstract

    Marine diatoms are key primary producers across diverse habitats in the global ocean. Diatoms rely on a biophysical carbon concentrating mechanism (CCM) to supply high concentrations of CO2around their carboxylating enzyme, RuBisCO. The necessity and energetic cost of the CCM are likely to be highly sensitive to temperature, as temperature impacts CO2concentration, diffusivity, and the kinetics of CCM components. Here, we used membrane inlet mass spectrometry (MIMS) and modeling to capture temperature regulation of the CCM in the diatomPhaeodactylum tricornutum (Pt). We found that enhanced carbon fixation rates byPtat elevated temperatures were accompanied by increased CCM activity capable of maintaining RuBisCO close to CO2saturation but that the mechanism varied. At 10 and 18 °C, diffusion of CO2into the cell, driven byPt’s ‘chloroplast pump’ was the major inorganic carbon source. However, at 18 °C, upregulation of the chloroplast pump enhanced (while retaining the proportion of) both diffusive CO2and active HCO3uptake into the cytosol, and significantly increased chloroplast HCO3concentrations. In contrast, at 25 °C, compared to 18 °C, the chloroplast pump had only a slight increase in activity. While diffusive uptake of CO2into the cell remained constant, active HCO3uptake across the cell membrane increased resulting inPtdepending equally on both CO2and HCO3as inorganic carbon sources. Despite changes in the CCM, the overall rate of active carbon transport remained double that of carbon fixation across all temperatures tested. The implication of the energetic cost of thePtCCM in response to increasing temperatures was discussed.

     
    more » « less
  4. Membrane permeabilities to CO2and HCO3constrain the function of CO2concentrating mechanisms that algae use to supply inorganic carbon for photosynthesis. In diatoms and green algae, plasma membranes are moderately to highly permeable to CO2but effectively impermeable to HCO3. Here, CO2and HCO3membrane permeabilities were measured using an18O‐exchange technique on two species of haptophyte algae,Emiliania huxleyiandCalcidiscus leptoporus, which showed that the plasma membranes of these species are also highly permeable to CO2(0.006–0.02 cm · s−1) but minimally permeable to HCO3. Increased temperature and CO2generally increased CO2membrane permeabilities in both species, possibly due to changes in lipid composition or CO2channel proteins. Changes in CO2membrane permeabilities showed no association with the density of calcium carbonate coccoliths surrounding the cell, which could potentially impede passage of compounds. Haptophyte plasma‐membrane permeabilities to CO2were somewhat lower than those of diatoms but generally higher than membrane permeabilities of green algae. One caveat of these measurements is that the model used to interpret18O‐exchange data assumes that carbonic anhydrase, which catalyzes18O‐exchange, is homogeneously distributed in the cell. The implications of this assumption were tested using a two‐compartment model with an inhomogeneous distribution of carbonic anhydrase to simulate18O‐exchange data and then inferring plasma‐membrane CO2permeabilities from the simulated data. This analysis showed that the inferred plasma‐membrane CO2permeabilities are minimal estimates but should be quite accurate under most conditions.

     
    more » « less
  5. Summary

    Steady‐state photosyntheticCO2responses (A/Cicurves) are used to assess environmental responses of photosynthetic traits and to predict future vegetative carbon uptake through modeling. The recent development of rapidA/Cicurves (RACiRs) permits faster assessment of these traits by continuously changing [CO2] around the leaf, and may reveal additional photosynthetic properties beyond what is practical or possible with steady‐state methods.

    Gas exchange necessarily incorporates photosynthesis and (photo)respiration. Each process was expected to respond on different timescales due to differences in metabolite compartmentation, biochemistry and diffusive pathways. We hypothesized that metabolic lags in photorespiration relative to photosynthesis/respiration andCO2diffusional limitations can be detected by varying the rate of change in [CO2] duringRACiR assays. We tested these hypotheses through modeling and experiments at ambient and 2% oxygen.

    Our data show that photorespiratory delays cause offsets in predictedCO2compensation points that are dependent on the rate of change in [CO2]. Diffusional limitations may reduce the rate of change in chloroplastic [CO2], causing a reduction in apparentRACiR slopes under highCO2ramp rates.

    MultirateRACiRs may prove useful in assessing diffusional limitations to gas exchange and photorespiratory rates.

     
    more » « less