ABSTRACT Brown grease (BG) is a high‐free fatty acid (FFA) waste coproduct from the food industry that remains largely unexploited. Herein, we describe a design strategy to upcycle BG into high sulfur‐content materials (HSMs) via inverse vulcanization, circumventing the need for costly transition metals or food‐grade compatibilizers. First, BG was esterified with methyl or allyl groups, yielding MeBG and aBG, respectively. This modification masked the polar carboxylic acids and enhanced miscibility with molten sulfur. Subsequent inverse vulcanization produced remeltable HSMs at 80 or 90 wt% sulfur with uniform elemental distributions by SEM–EDX. FT‐IR spectroscopy revealed the consumption of C=C moieties and the formation of C–S bonds, signifying robust cross‐linking. Thermal analysis (TGA, DSC) indicated good thermal stability (Td,5%up to 223°C) and glass transitions characteristic of polysulfide networks. Mechanical evaluations demonstrated compressive strengths up to 19.2 MPa, exceeding the minimum requirement for residential foundation‐grade cement (17 MPa) and rivaling previously reported HSMs containing similarly high sulfur content. Notably, MeBG and aBG incorporate organics comprising up to 97 wt% BG, significantly improving the upcycled mass efficiency relative to earlier BG‐based composites. This esterification‐driven approach thus offers a practical, scalable pathway to convert low‐value BG into advanced materials with tunable thermomechanical properties.
more »
« less
Novel Sulfur‐Containing Cross‐Linking Agent for Si‐Based Preceramic Polymers
Abstract Cross‐linking polymethylhydrosiloxane (PMHS) with divinylthiophene (DVT) via hydrosilylation in highly dilute conditions and subsequent supercritical drying in CO2yield a polymeric aerogel containing aromatic sulfur integrally and uniformly distributed throughout the monolith. Fourier‐transform infrared (FT‐IR) spectroscopy indicates almost complete consumption of vinyl groups and SiH bonds in the product. Both FT‐IR and Raman spectroscopic analyses support loss of conjugation of vinyl groups with the retained double bonds of the thiophene ring. Scanning electron microscopy (SEM) indicates a condensed colloidal structure with characteristic particulate diameters of about 165 nm. SEM coupled with energy dispersive X‐ray spectroscopy elemental mapping shows that sulfur is distributed homogeneously in the polymeric aerogel. Porosimetry of the mesoporous aerogel indicates the effective average pore diameters are about 12 nm. Thermogravimetric analysis (TGA) establishes greater thermal stability of the PMHS‐DVT product than either of the pure unreacted components. TGA coupled with mass spectrometric (TG‐MS) identification of the volatiles released during pyrolysis shows that sulfur is driven from the cross‐linked polymer as thiophene and its derivatives. Recorded mass spectra support the hypothesis that cross‐linking DVT bridges between PMHS chains in the polymeric aerogel, and that this results in a more thermally stable monolith.
more »
« less
- PAR ID:
- 10457552
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Chemistry and Physics
- Volume:
- 221
- Issue:
- 2
- ISSN:
- 1022-1352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Environmental damage caused by waste plastics and downstream chemical breakdown products is a modern crisis. Endocrine‐disrupting bisphenol A (BPA), found in breakdown products of poly(bisphenol A carbonate) (PC), is an especially pernicious example that interferes with the reproduction and development of a wide range of organisms, including humans. Herein we report a single‐stage thiocracking method to chemically upcycle polycarbonate using elemental sulfur, a waste product of fossil fuel refining. Importantly, this method disintegrates bisphenol A units into monoaryls, thus eliminating endocrine‐disrupting BPA from the material and from any potential downstream waste. Thiocracking of PC (10 wt%) with elemental sulfur (90 wt%) at 320 °C yields the highly crosslinked networkSPC90. The composition, thermal, morphological, and mechanical properties ofSPC90were characterized by FT‐IR spectroscopy, TGA, DSC, elemental analysis, SEM/EDX, compressive strength tests, and flexural strength tests. The compositeSPC90(compressive strength = 12.8 MPa, flexural strength = 4.33 MPa) showed mechanical strengths exceeding those of commercial bricks and competitive with those of mineral cements. The approach discussed herein represents a method to chemically upcycle polycarbonate while deconstructing BPA units, and valorizing waste sulfur to yield structurally viable building materials that could replace less‐green legacy materials.more » « less
-
We investigate the impact of solvents on the microstructure of poly(methylhydrosiloxane)/divinylbenzene (PMHS/DVB) aerogels. The gels are obtained in highly diluted conditions via hydrosilylation reaction of PMHS bearing Si-H groups and cross-linking it with C=C groups of DVB. Polymer aerogels are obtained after solvent exchange with liquid CO2 and subsequent supercritical drying. Samples are characterized using microscopy and porosimetry. Common pore-formation concepts do not provide a solid rationale for the observed data. We postulate that solubility and swelling of the cross-linked polymer in various solvents are major factors governing pore formation of these PMHS/DVB polymer aerogels.more » « less
-
Nanocomposite electrospun fibers were fabricated from poly(lactic) acid (PLA) and needle-like hydroxyapatite nanoparticles made from eggshells. The X-ray diffraction spectrum and the scanning electron micrograph showed that the hydroxyapatite particles are highly crystalline and are needle-liked in shape with diameters between 10 and 20 nm and lengths ranging from 100 to 200 nm. The microstructural, thermal, and mechanical properties of the electrospun fibers were characterized using scanning electron microscope (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and tensile testing techniques. The SEM study showed that both pristine and PLA/EnHA fibers surfaces exhibited numerous pores and rough edges suitable for cell attachment. The presence of the rod-liked EnHA particles was found to increase thermal and mechanical properties of PLA fibers relative to pristine PLA fibers. The confocal optical images showed that osteoblast cells were found to attach on dense pristine PLA and PLA/HA-10 wt% fibers after 48 hours of incubation. The stained confocal optical images indicated the secretion of cytoplasmic extension linking adjoining nuclei after 96 hours of incubation. These findings showed that eggshell based nanohydroxyapatite and poly(lactic acid) fibers could be potential scaffold for tissue regeneration.more » « less
-
Abstract This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high‐yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross‐linking are investigated. The morphological and thermo‐physical properties, as well as water absorption of the developed nanofiber‐based mats are characterized using microscopical analysis, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.more » « less
An official website of the United States government
