skip to main content


Title: Natural transition orbitals for complex two‐component excited state calculations
Abstract

While the natural transition orbital (NTO) method has allowed electronic excitations from time‐dependent Hartree‐Fock and density functional theory to be viewed in a traditional orbital picture, the extension to multicomponent molecular orbitals such as those used in relativistic two‐component methods or generalized Hartree‐Fock (GHF) or generalized Kohn‐Sham (GKS) is less straightforward due to mixing of spin‐components and the inherent inclusion of spin‐flip transitions in time‐dependent GHF/GKS. An extension of single‐component NTOs to the two‐component framework is presented, in addition to a brief discussion of the practical aspects of visualizing two‐component complex orbitals. Unlike the single‐component analog, the method explicitly describes the spin and frequently obtains solutions with several significant orbital pairs. The method is presented using calculations on a mercury atom and a CrO2Cl2complex.

 
more » « less
Award ID(s):
1856210 1624430
NSF-PAR ID:
10457608
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
41
Issue:
16
ISSN:
0192-8651
Page Range / eLocation ID:
p. 1557-1563
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Algebraic diagrammatic construction (ADC) theory is a computationally efficient and accurate approach for simulating electronic excitations in chemical systems. However, for the simulations of excited states in molecules with unpaired electrons, the performance of ADC methods can be affected by the spin contamination in unrestricted Hartree–Fock (UHF) reference wavefunctions. In this work, we benchmark the accuracy of ADC methods for electron attachment and ionization of open-shell molecules with the UHF reference orbitals (EA/IP-ADC/UHF) and develop an approach to quantify the spin contamination in charged excited states. Following this assessment, we demonstrate that the spin contamination can be reduced by combining EA/IP-ADC with the reference orbitals from restricted open-shell Hartree–Fock (ROHF) or orbital-optimized Møller–Plesset perturbation (OMP) theories. Our numerical results demonstrate that for open-shell systems with strong spin contamination in the UHF reference, the third-order EA/IP-ADC methods with the ROHF or OMP reference orbitals are similar in accuracy to equation-of-motion coupled cluster theory with single and double excitations. 
    more » « less
  2. Abstract

    Conformational effects on the σ‐electron delocalization in oligosilanes are addressed by Hartree–Fock and time‐dependent density functional theory calculations (B3LYP, 6‐311G**) at MP2 optimized geometries of permethylated uniformly helical linear oligosilanes (all‐ω‐SinR2n+2) up ton=16 and for backbone dihedral anglesω=55–180°. The extent of σ delocalization is judged by the partition ratio of the highest occupied molecular orbital and is reflected in the dependence of its shape and energy and of UV absorption spectra onn. The results agree with known spectra of all‐transoidloose‐helix conformers (all‐[±165]‐SinMe2n+2) and reveal a transition atω≈90° from the “σ‐delocalized” limit atω=180° toward and close to the physically non‐realizable “σ‐localized” tight‐helix limitω=0 with entirely different properties. The distinction is also obtained in the Hückel Ladder H and C models of σ delocalization. An easy intuitive way to understand the origin of the two contrasting limits is to first view the linear chain as two subchains with alternating primary and vicinal interactions (σ hyperconjugation), one consisting of the odd and the other of the even σ(SiSi) bonds, and then allow the two subchains to interact by geminal interactions (σ conjugation).

     
    more » « less
  3. An analytical implementation of static dipole polarizabilities within the generalized Kohn–Sham semicanonical projected random phase approximation (GKS-spRPA) method for spin-restricted closed-shell and spin-unrestricted open-shell references is presented. General second-order analytical derivatives of the GKS-spRPA energy functional are derived using a Lagrangian approach. By resolution-of-the-identity and complex frequency integration methods, an asymptotic [Formula: see text] scaling of operation count and [Formula: see text] scaling of storage is realized, i.e., the computational requirements are comparable to those for GKS-spRPA ground state energies. GKS-spRPA polarizabilities are assessed for small molecules, conjugated long-chain hydrocarbons, metallocenes, and metal clusters, by comparison against Hartree–Fock (HF), semilocal density functional approximations (DFAs), second-order Møller–Plesset perturbation theory, range-separated hybrids, and experimental data. For conjugated polydiacetylene and polybutatriene oligomers, GKS-spRPA effectively addresses the “overpolarization” problem of semilocal DFAs and the somewhat erratic behavior of post-PBE RPA polarizabilities without empirical adjustments. The ensemble averaged GKS-spRPA polarizabilities of sodium clusters (Na n for n = 2, 3, …, 10) exhibit a mean absolute deviation comparable to PBE with significantly fewer outliers than HF. In conclusion, analytical second-order derivatives of GKS-spRPA energies provide a computationally viable and consistent approach to molecular polarizabilities, including systems prohibitive for other methods due to their size and/or electronic structure. 
    more » « less
  4. We present a method for obtaining origin-independent electronic circular dichroism (ECD) in the length-gauge representation LG(OI) without the usage of London atomic orbitals. This approach builds upon the work by Caricato [J. Chem. Phys. 153, 151101 (2020)] and is applied to rotatory strengths and ECD spectra from damped response theory. Numerical results are presented for time-dependent Hartree–Fock and density-functional theory, the second-order algebraic diagrammatic construction method, and linear-response coupled-cluster theory with singles and approximate doubles. We can support the finding that the common choice of placing the gauge origin in the center of mass of a molecule in conventional length-gauge calculations involving chiroptical properties might not be optimal and show that LG(OI) is a valuable alternative for the origin-independent calculation of ECD spectra. We show that, for a limited test set, the convergence of the rotatory strengths calculated with the LG(OI) approach toward the basis-set limit tends to be faster than for the established velocity gauge representation. Relationships between the sum-over-states expression of the optical rotation in the LG(OI) framework and its representation in terms of response functions are analyzed. 
    more » « less
  5. Bond order quantifies the number of electrons dressed-exchanged between two atoms in a material and is important for understanding many chemical properties. Diatomic molecules are the smallest molecules possessing chemical bonds and play key roles in atmospheric chemistry, biochemistry, lab chemistry, and chemical manufacturing. Here we quantum-mechanically calculate bond orders for 288 diatomic molecules and ions. For homodiatomics, we show bond orders correlate to bond energies for elements within the same chemical group. We quantify and discuss how semicore electrons weaken bond orders for elements having diffuse semicore electrons. Lots of chemistry is effected by this. We introduce a first-principles method to represent orbital-independent bond order as a sum of orbital-dependent bond order components. This bond order component analysis (BOCA) applies to any spin-orbitals that are unitary transformations of the natural spin-orbitals, with or without periodic boundary conditions, and to non-magnetic and (collinear or non-collinear) magnetic materials. We use this BOCA to study all period 2 homodiatomics plus Mo 2 , Cr 2 , ClO, ClO − , and Mo 2 (acetate) 4 . Using Manz's bond order equation with DDEC6 partitioning, the Mo–Mo bond order was 4.12 in Mo 2 and 1.46 in Mo 2 (acetate) 4 with a sum of bond orders for each Mo atom of ∼4. Our study informs both chemistry research and education. As a learning aid, we introduce an analogy between bond orders in materials and message transmission in computer networks. We also introduce the first working quantitative heuristic model for all period 2 homodiatomic bond orders. This heuristic model incorporates s–p mixing to give heuristic bond orders of ¾ (Be 2 ), 1¾ (B 2 ), 2¾ (C 2 ), and whole number bond orders for the remaining period 2 homodiatomics. 
    more » « less