Abstract Primary production, a key regulator of the global carbon cycle, is highly responsive to variations in climate. Yet, a detailed, continental‐scale risk assessment of climate‐related impacts on primary production is lacking. We combined 16 years of MODIS NDVI data, a remotely sensed proxy for primary production, with observations from 1218 climate stations to derive values of ecosystem sensitivity to precipitation and aridity. For the first time, we produced an empirically‐derived map of ecosystem sensitivity to climate across the conterminous United States. Over this 16‐year period, annual primary production values were most sensitive to precipitation and aridity in dryland and grassland ecosystems. Century‐long trends measured at the climate stations showed intensifying aridity and climatic variability in many of these sensitive regions. Dryland ecosystems in the western US may be particularly vulnerable to reductions in primary production and consequent degradation of ecosystem services as climate change and variability increase in the future.
more »
« less
Delineating Environmental Stresses to Primary Production of U.S. Forests From Tree Rings: Effects of Climate Seasonality, Soil, and Topography
Abstract Primary production is the entry point of energy and carbon into ecosystems, but modeling responses of primary production to “environmental stress” (i.e., reductions of primary production from nonoptimal environmental conditions) remains a key challenge and source of uncertainty in our understanding of Earth's carbon cycle. Here we develop an approach for estimating annual “environmental stress” from tree rings based on the proportion of the optimal diameter growth rate (from species‐specific allometric equations) that is realized in a given year. We assessed climatic, topographic, and soil drivers of environmental stress, as well as their interactions, using both empirical model experiments and linear mixed effect models. Climate gradients and interannual climate variability dominated spatial and temporal variability of environmental stress in much of the western United States, where the tree‐ring environmental stress index was positively correlated with antecedent climatic water balance (precipitation minus potential evapotranspiration) and negatively correlated with temperature and vapor pressure deficit. Excluding topographic and soil information from empirical models reduced their ability to capture spatial gradients in environmental stress, particularly in the eastern United States, where growth was not as strongly limited by climate. Mean climate conditions and topographic characteristics had significant interaction effects with the climatic water balance, indicating an increasing importance of winter moisture for warmer and drier sites and as elevation and topographic wetness index increased. These results suggest that including effects of antecedent climate (particularly in dry regions) and site topographic and soil characteristics could improve parameterization of environmental stress effects in primary production models.
more »
« less
- Award ID(s):
- 1832210
- PAR ID:
- 10457678
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 125
- Issue:
- 2
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Process-based models of tree-ring width are used both for reconstructing past climates and for projecting changes in growth due to climate change. Since soil moisture observations are unavailable at appropriate spatial and temporal scales, these models generally rely on simple water budgets driven in part by temperature-based potential evapotranspiration (PET) estimates, but the choice of PET model could have large effects on simulated soil moisture, moisture stress, and radial growth. Here, I use four different PET models to drive the VS-Lite model and evaluate the extent to which they differ in both their ability to replicate observed growth variability and their simulated responses to projected 21st century warming. Across more than 1200 tree-ring width chronologies in the conterminous United States, there were no significant differences among the four PET models in their ability to replicate observed radial growth, but the models differed in their responses to 21st century warming. The temperature-driven empirical PET models (Thornthwaite and Hargreaves) simulated much larger warming-induced increases in PET and decreases in soil moisture than the more physically realistic PET models (Priestley–Taylor and Penman–Monteith). In cooler and more mesic regions with relatively minimal moisture constraints to growth, the models simulated similarly small reductions in growth with increased warming. However, in dry regions, the Thornthwaite- and Hargreaves-driven VS-Lite models simulated an increase in moisture stress roughly double that of the Priestley–Taylor and Penman–Monteith models, which also translated to larger simulated declines in radial growth under warming. While the lack of difference in the models’ ability to replicate observed radial growth variability is an encouraging sign for some applications (e.g. attributing changes in growth to specific climatic drivers), the large differences in model responses to warming suggest that caution is needed when applying the temperature-driven PET models to climatic conditions with large trends in temperature.more » « less
-
Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability) and geochemical severity (e.g., pH, electrical conductivity). In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP) exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM) fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 μmol O 2 /m 2 /s in the most arid soils to an average of 6.97 μmol O 2 /m 2 /s in the most productive soils, the latter equivalent to 217 g C/m 2 /y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems.more » « less
-
Abstract Increased nutrient inputs due to anthropogenic activity are expected to increase primary productivity across terrestrial ecosystems, but changes in allocation aboveground versus belowground with nutrient addition have different implications for soil carbon (C) storage. Thus, given that roots are major contributors to soil C storage, understanding belowground net primary productivity (BNPP) and biomass responses to changes in nutrient availability is essential to predicting carbon–climate feedbacks in the context of interacting global environmental changes. To address this knowledge gap, we tested whether a decade of nitrogen (N) and phosphorus (P) fertilization consistently influenced aboveground and belowground biomass and productivity at nine grassland sites spanning a wide range of climatic and edaphic conditions in the continental United States. Fertilization effects were strong aboveground, with both N and P addition stimulating aboveground biomass at nearly all sites (by 30% and 36%, respectively, on average). P addition consistently increased root production (by 15% on average), whereas other belowground responses to fertilization were more variable, ranging from positive to negative across sites. Site‐specific responses to P were not predicted by the measured covariates. Atmospheric N deposition mediated the effect of N fertilization on root biomass and turnover. Specifically, atmospheric N deposition was positively correlated with root turnover rates, and this relationship was amplified with N addition. Nitrogen addition increased root biomass at sites with low N deposition but decreased it at sites with high N deposition. Overall, these results suggest that the effects of nutrient supply on belowground plant properties are context dependent, particularly with regard to background N supply rates, demonstrating that site conditions must be considered when predicting how grassland ecosystems will respond to increased nutrient loading from anthropogenic activity.more » « less
-
Aims: Climate change is expected to shift climatic envelopes of temperate tree species into boreal forests where unsuitable soils may limit range expansion. We studied several edaphic thresholds (mycorrhizae, soil chemistry) that can limit seedling establishment of two major temperate tree species, sugar maple (arbuscular mycorrhizal, AM) and American beech (ectomycorrhizal, EM). Methods: We integrate two field surveys of tree seedling density, mycorrhizal colonization, and soil chemistry in montane forests of the Adirondack and Green Mountains (Mtns) in the northeastern United States. We conducted correlation and linear breakpoint analyses to detect soil abiotic and biotic thresholds in seedling distributions across edaphic gradients. Results: In the Green Mtns, sugar maple seedling importance (an index of species relative density and frequency, IV) declined sharply with low pH (< 3.74 in mineral soil) and low mycorrhizal colonization (< 27.5% root length colonized). Sugar maple importance was highly correlated with multiple aspects of soil chemistry, while beech was somewhat sensitive to pH only; beech mycorrhizal colonization did not differ across elevation. Mycorrhizal colonization of sugar maple was positively correlated with soil pH and conspecific overstory basal area. In the Adirondacks, sugar maple importance, but not beech, plateaued above thresholds in soil calcium (~ 2 meq/100 g) and magnesium (~ 0.3 meq/100 g). Conclusions: The establishment of sugar maple, but not beech, was impeded by both biotic and abiotic soil components in montane conifer forests and by soil acidity in temperate deciduous forests. These differences in species sensitivity to edaphic thresholds will likely affect species success and future shifts in forest composition.more » « less
An official website of the United States government
