Distributed acoustic sensing (DAS) technology is an emerging field of seismic sensing that enables recording ambient noise seismic data along the entire length of a fiber-optic cable at meter-scale resolution. Such a dense spatial resolution of recordings over long distances has not been possible using traditional methods because of limited hardware resources and logistical concerns in an urban environment. The low spatial resolution of traditional passive seismic acquisition techniques has limited the accuracy of the previously generated velocity profiles in many important urban regions, including the Reno-area basin, to the top 100 m of the underlying subsurface. Applying the method of seismic interferometry to ambient noise strain rate data obtained from a dark-fiber cable allows for generating noise cross correlations, which can be used to infer shallow and deep subsurface properties and basin geometry. We gathered DAS ambient noise seismic data for this study using a 12 km portion of a dark-fiber line in Reno, Nevada. We used gathered data to generate and invert dispersion curves to estimate the near-surface shear-wave velocity structure. Comparing the generated velocity profiles with previous regional studies shows good agreement in determining the average depth to bedrock and velocity variations in the analyzed domain. A synthetic experiment is also performed to verify the proposed framework further and better understand the effect of the infrastructural cover along the cable. The results obtained from this research provide insight into the application of DAS using dark-fiber lines in subsurface characterization in urban environments. It also discusses the potential effects of the conduit that covers such permanent fiber installations on the produced inversion results.
The Granada Basin in southeast Spain is an area of moderate seismicity. Yet, it hosts some of the highest seismic hazards in the Iberian Peninsula due to the presence of shallow soft sediments amplifying local ground motion. In urban areas, seismic measurements often suffer from sparse instrumentation. An enticing alternative to conventional seismometers is the distributed acoustic sensing (DAS) technology that can convert fibre-optic telecommunication cables into dense arrays of seismic sensors. In this study, we perform a shallow structure analysis using the ambient seismic field interferometry method. We conduct a DAS array field test in the city of Granada on the 26 and 27 August 2020, using a telecommunication fibre. In addition to the existing limitations of using DAS with unknown fibre-ground coupling conditions, the complex geometry of the fibre and limited data recording duration further challenge the extraction of surface-wave information from the ambient seismic field in such an urban environment. Therefore, we develop a processing scheme that incorporates a frequency–wavenumber (f−k) filter to enhance the quality of the virtual shot gathers and related multimode dispersion images. We are able to use this data set to generate several shear-wave velocity (VS) profiles for different sections of the cable. The shallow VS structure shows a good agreement with different geological conditions of soil deposits. This study demonstrates that DAS could provide insights into soil characterization and seismic microzonation in urban areas. In addition, the results contribute to a better understanding of local site response to ground motion.
more » « less- Award ID(s):
- 2022716
- NSF-PAR ID:
- 10457831
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 235
- Issue:
- 2
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 1849-1860
- Size(s):
- p. 1849-1860
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Seismic imaging and monitoring of the near-surface structure are crucial for the sustainable development of urban areas. However, standard seismic surveys based on cabled or autonomous geophone arrays are expensive and hard to adapt to noisy metropolitan environments. Distributed acoustic sensing (DAS) with pre-existing telecom fiber optic cables, together with seismic ambient noise interferometry, have the potential to fulfill this gap. However, a detailed noise wavefield characterization is needed before retrievingcoherent waves from chaotic noise sources. We analyze local seismic ambient noise by tracking five-month changes in signal-to-noise ratio (SNR) of Rayleigh surface wave estimated from traffic noise recorded by DAS along the straight university campus busy road. We apply the seismic interferometry method to the 800 m long part of the Penn State Fiber-Optic For Environment Sensing (FORESEE) array. We evaluate the 160 virtual shot gathers (VSGs) by determining the SNR using the slant-stack technique. We observe strong SNR variations in time and space. We notice higher SNR for virtual source points close to road obstacles. The spatial noise distribution confirms that noise energy focuses mainly on bumps and utility holes. We also see the destructive impact of precipitation, pedestrian traffic, and traffic along main intersections on VSGs. A similar processing workflow can be applied to various straight roadside fiber optic arrays in metropolitan areas.
-
Abstract Near‐surface seismic velocity structure plays a critical role in ground motion amplification during large earthquakes. In particular, the local Vp/Vs ratio strongly influences the amplitude of Rayleigh waves. Previous studies have separately imaged 3D seismic velocity and Vp/Vs ratio at seismogenic depth, but lack regional coverage and/or fail to constrain the shallowest structure. Here, we combine three datasets with complementary sensitivity in a Bayesian joint inversion for shallow crustal shear velocity and near‐surface Vp/Vs ratio across Southern California. Receiver functions–including with an apparent delayed initial peak in sedimentary basins, and long considered a nuisance in receiver function imaging studies–highly correlate with short‐period Rayleigh wave ellipticity measurements and require the inclusion of a Vp/Vs parameter. The updated model includes near‐surface low shear velocity more in line with geotechnical layer estimates, and generally lower than expected Vp/Vs outside the basins suggesting widespread shallow fracturing and/or groundwater undersaturation.
-
Abstract Soft sediment layers can significantly amplify seismic waves from earthquakes. Large dynamic strains can trigger a nonlinear response of shallow soils with low strength, which is characterized by a shift of resonance frequencies, ground motion deamplification, and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions recorded along a fiber‐optic cable offshore the Tohoku region, Japan, with distributed acoustic sensing (DAS). We compute AutoCorrelation Functions (ACFs) of the ground motions from 105 earthquakes in different frequency bands. We detect time delays in the ACF waveforms that are converted to relative velocity changes (
dv /v ).dv /v drops, which characterize soil nonlinearity, are observed during the strongest ground motions and exhibit a large variability along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an unprecedented spatial resolution. -
Abstract In this study, we investigate the shallow shear wave velocity structure of the Los Angeles Basin in southern California, using ambient noise correlations between 5 dense arrays and 21 broadband stations from the Southern California Seismic Network (SCSN). We observe clear fundamental mode and first overtone Rayleigh waves in the frequency band 0.25–2.0 Hz, and obtain group velocity maps through tomography. We further derive a 3D shear wave velocity model, covering a large portion of the central LA Basin for the depths shallower than 3 km. We found that the small scale shallow velocity structure heterogeneities are better resolved compared with the SCEC Community velocity models. Our model captures the presence of the Newport‐Inglewood fault by a NW–SE trending high velocity belt. Our model provides more accurate constraints on local ground motion predictions with detailed mapping of structural heterogeneities.