skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution of specialized microbial cooperation in dynamic fluids
Abstract Here, we study the evolution of specialization using realistic computer simulations of bacteria that secrete two public goods in a dynamic fluid. Through this first‐principles approach, we find physical factors such as diffusion, flow patterns and decay rates are as influential as fitness economics in governing the evolution of community structure, to the extent that when mechanical factors are taken into account, (a) generalist communities can resist becoming specialists despite the invasion fitness of specialization; (b) generalist and specialists can both resist cheaters despite the invasion fitness of free‐riding; and (c) multiple community structures can coexist despite the opposing force of competitive exclusion. Our results emphasize the role of spatial assortment and physical forces on niche partitioning and the evolution of diverse community structures.  more » « less
Award ID(s):
1805157
PAR ID:
10458007
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Volume:
33
Issue:
3
ISSN:
1010-061X
Format(s):
Medium: X Size: p. 256-269
Size(s):
p. 256-269
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade‐offs on alternative host plants, yet the evidence of such trade‐offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population‐genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more‐specialized species occur on fewer of their potential hosts than do less‐specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more‐specialized species do not appear to outperform more generalist species. 
    more » « less
  2. Habitat specialization underpins biological processes from species distributions to speciation. However, organisms are often described as specialists or generalists based on a single niche axis, despite facing complex, multidimensional environments. Here, we analysed 236 environmental soil microbiomes across the United States and demonstrate that 90% of >1,200 prokaryotes followed one of two trajectories: specialization on all niche axes (multidimensional specialization) or generalization on all axes (multidimensional generalization). We then documented that this pervasive multidimensional specialization/generalization had many ecological and evolutionary consequences. First, multidimensional specialization and generalization are highly conserved with very few transitions between these two trajectories. Second, multidimensional generalists dominated communities because they were 73 times more abundant than specialists. Lastly, multidimensional specialists played important roles in community structure with ~220% more connections in microbiome networks. These results indicate that multidimensional generalization and specialization are evolutionarily stable with multidimensional generalists supporting larger populations and multidimensional specialists playing important roles within communities, probably stemming from their overrepresentation among pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate that the vast majority of soil prokaryotes are restricted to one of two multidimensional niche trajectories, multidimensional specialization or multidimensional generalization, which then has far-reaching consequences for evolutionary transitions, microbial dominance and community roles. 
    more » « less
  3. Abstract Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear.Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested.We used repeated stable isotope measurements (δ13C, δ15N;N = 3,509) and 6 years of capture–mark–recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies.Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists.These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change. 
    more » « less
  4. null (Ed.)
    Predator specialization has often been considered an evolutionary “dead end” due to the constraints associated with the evolution of morphological and functional optimizations throughout the organism. However, in some predators, these changes are localized in separate structures dedicated to prey capture. One of the most extreme cases of this modularity can be observed in siphonophores, a clade of pelagic colonial cnidarians that use tentilla (tentacle side branches armed with nematocysts) exclusively for prey capture. Here we study how siphonophore specialists and generalists evolve, and what morphological changes are associated with these transitions. To answer these questions, we: a) Measured 29 morphological characters of tentacles from 45 siphonophore species, b) mapped these data to a phylogenetic tree, and c) analyzed the evolutionary associations between morphological characters and prey-type data from the literature. Instead of a dead end, we found that siphonophore specialists can evolve into generalists, and that specialists on one prey type have directly evolved into specialists on other prey types. Our results show that siphonophore tentillum morphology has strong evolutionary associations with prey type, and suggest that shifts between prey types are linked to shifts in the morphology, mode of evolution, and evolutionary correlations of tentilla and their nematocysts. The evolutionary history of siphonophore specialization helps build a broader perspective on predatory niche diversification via morphological innovation and evolution. These findings contribute to understanding how specialization and morphological evolution have shaped present-day food webs. 
    more » « less
  5. Dyson, Zoe A (Ed.)
    ABSTRACT Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains ofEscherichia coliandSalmonella entericaby competing a generalist T5-like phage able to infect both prey against P22vir, anS. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that thein vitrocost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCEThere is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and anin vitrosystem consisting ofEscherichia coli,Salmonella enterica, a T5-like generalist phage, and the specialist phage P22virto highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections. 
    more » « less