skip to main content


Title: Polymerization‐induced self‐assembly of metallo‐polyelectrolyte block copolymers
ABSTRACT

Cobaltocenium‐containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization‐induced self‐assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain‐transfer agent (macro‐CTA) based on poly(2‐cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core‐forming block was poly(2‐hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro‐CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core‐forming PHPMA had a strong influence on the size of nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 77–83

 
more » « less
Award ID(s):
1655740
PAR ID:
10458011
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
58
Issue:
1
ISSN:
2642-4150
Page Range / eLocation ID:
p. 77-83
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) withn‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 376–381

     
    more » « less
  2. Abstract

    The evolution of particle morphology occurring during polymerization‐induced self‐assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)‐b‐poly(benzyl methacrylate) (POEGMA‐b‐PBzMA) is studied. A well‐controlled reversible addition–fragmentation chain transfer (RAFT) polymerization yields nano‐objects with various morphologies: spheres, aggregates, worm‐like structures, and vesicles. A comparison of the morphology of the nano‐objects formed from two different chain‐length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher‐order structures could be attained simply by extending the reaction time, after reaching full monomer conversion.

     
    more » « less
  3. Abstract

    Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0= 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system.

     
    more » « less
  4. Abstract

    Poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate) (PTMA) redox polymer–based nano‐objects are synthesized by polymerization‐induced self‐assembly with poly[oligo(ethylene glycol) methyl ether methacrylate] and poly[(4‐methacryloyloxy)‐2,2,6,6‐tetramethylpiperidinium chloride] as hydrophilic macro‐chain transfer agents. These hydrophilic blocks are used in order to stabilize hydrophobic PTMA blocks in aqueous medium. The accordingly obtained spherical nano‐objects are observed via transmission electron microscopy analysis. Cyclic voltammetry measurements indicate that the nature and the length of coronal blocks influence the redox process of the PTMA core blocks. Moreover, these electroactive nano‐objects display low viscosities with a shear‐thinning behavior, making them suitable as cathode‐active materials for aqueous flow‐assisted electrochemical systems.

     
    more » « less
  5. A laboratory-synthesized triblock copolymer poly(ethylene oxide-b-acrylic acid-b-styrene) (PEG-PAA-PS) was used as a template to synthesize hollow BaCO3 nanoparticles (BC-NPs). The triblock copolymer was synthesized using reversible addition–fragmentation chain transfer radical polymerization. The triblock copolymer has a molecular weight of 1.88 × 104 g/mol. Transmission electron microscopy measurements confirm the formation of spherical micelles with a PEG corona, PAA shell, and PS core in an aqueous solution. Furthermore, the dynamic light scattering experiment revealed the electrostatic interaction of Ba2+ ions with an anionic poly(acrylic acid) block of the micelles. The controlled precipitation of BaCO3 around spherical polymeric micelles followed by calcination allows for the synthesis of hollow BC-NPs with cavity diameters of 15 nm and a shell thickness of 5 nm. The encapsulation and release of methotrexate from hollow BC-NPs at pH 7.4 was studied. The cell viability experiments indicate the possibility of BC-NPs maintaining biocompatibility for a prolonged time. 
    more » « less