Abstract Most Earth surface carbonates precipitate out of isotopic equilibrium with their host solution, complicating the use of stable isotopes in paleoenvironment reconstructions. Disequilibrium can arise from exchange reactions in the DIC‐H2O system as well as during crystal growth reactions in the DIC‐CaCO3system. Existing models account for kinetic isotope effects (KIEs) in these systems separately but the models have yet to be combined in a general framework. Here, an open‐system box model is developed for describing disequilibrium carbon, oxygen, and clumped (Δ47, Δ48, and Δ49) isotope effects in the CaCO3‐DIC‐H2O system. The model is used to simulate calcite precipitation experiments in which the fluxes and isotopic compositions of CO2and CaCO3were constrained. Using a literature compilation of equilibrium and kinetic fractionation factors, modeledδ18O and Δ47values of calcite are in good agreement with the experimental data covering a wide range in crystal growth rate and solution pH. This relatively straightforward example provides a foundation for adapting the model to other situations involving CO2absorption (e.g., corals, foraminifera, and high‐pH travertines) or degassing (e.g., speleothems, low‐pH travertines, and cryogenic carbonates) and/or mixing with other dissolved inorganic carbon sources.
more »
« less
Flaming as part of aseptic technique increases CO 2 (g) and decreases pH in freshwater culture media
Abstract Aseptic technique has historically served as a fundamental practice in microbiology, helping to maintain culture purity and integrity. This technique has been widely encouraged and employed for use with cultures of heterotrophic bacteria as well as freshwater and marine algae. Yet, recent observations have suggested that these approaches may bring their own influences. We observed variations in growth among replicate experimental cyanobacterial cultures upon flaming of the culture tube opening during sample transfer and collection. Investigation revealed the pH of culture media had decreased from the initial pH established during media preparation. Flaming of sterile culture media alone confirmed a significant decrease, by as much as 1.7 pH units, and correlated with increased flaming events over time. We hypothesized that the causative factor was the introduction of carbon dioxide (CO2) into the media. To test this hypothesis, qualitative and quantitative analyses were used to determine the primary driver of pH decline. We further assessed the direct effects of flaming and subsequent pH changes onMicrocystis aeruginosacultures, showing flame‐driven pH changes and/or the introduction of CO2influenced experimental results. Our observations provide a cautionary tale of how classic and well‐accepted approaches may have unintended consequences, suggesting new approaches may be necessary in research areas assessing pH or carbon‐related effects on microbial communities.
more »
« less
- Award ID(s):
- 1840715
- PAR ID:
- 10458047
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography: Methods
- Volume:
- 18
- Issue:
- 5
- ISSN:
- 1541-5856
- Page Range / eLocation ID:
- p. 211-219
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract CO2electroreduction (CO2R) operating in acidic media circumvents the problems of carbonate formation and CO2crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali‐cation‐free CO2R in pure acid. However, without alkali cations, stabilizing *CO2intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube‐supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single‐atom active site with energetically localizeddstates to strengthen the adsorbate‐surface interactions, which stabilizes *CO2intermediates at the acidic interface (pH=1). As a result, we realize CO2conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2is successfully converted in cation exchanged membrane‐based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2R compared to alkaline conditions, since the potential‐limiting step, *CO2to *COOH, is pH‐dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2R.more » « less
-
Abstract Carbon isotope biosignatures preserved in the Precambrian geologic record are primarily interpreted to reflect ancient cyanobacterial carbon fixation catalyzed by Form I RuBisCO enzymes. The average range of isotopic biosignatures generally follows that produced by extant cyanobacteria. However, this observation is difficult to reconcile with several environmental (e.g., temperature, pH, and CO2concentrations), molecular, and physiological factors that likely would have differed during the Precambrian and can produce fractionation variability in contemporary organisms that meets or exceeds that observed in the geologic record. To test a specific range of genetic and environmental factors that may impact ancient carbon isotope biosignatures, we engineered a mutant strain of the model cyanobacteriumSynechococcus elongatusPCC 7942 that overexpresses RuBisCO across varying atmospheric CO2concentrations. We hypothesized that changes in RuBisCO expression would impact the net rates of intracellular CO2fixation versus CO2supply, and thus whole‐cell carbon isotope discrimination. In particular, we investigated the impacts of RuBisCO overexpression under changing CO2concentrations on both carbon isotope biosignatures and cyanobacterial physiology, including cell growth and oxygen evolution rates. We found that an increased pool of active RuBisCO does not significantly affect the13C/12C isotopic discrimination (εp) at all tested CO2concentrations, yielding εpof ≈ 23‰ for both wild‐type and mutant strains at elevated CO2. We therefore suggest that expected variation in cyanobacterial RuBisCO expression patterns should not confound carbon isotope biosignature interpretation. A deeper understanding of environmental, evolutionary, and intracellular factors that impact cyanobacterial physiology and isotope discrimination is crucial for reconciling microbially driven carbon biosignatures with those preserved in the geologic record.more » « less
-
Abstract Peat mosses (Sphagnumspp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits.Sphagnummosses harbor a diverse assemblage of microbial partners, including N2‐fixing (diazotrophic) and CH4‐oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of theSphagnumphytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2(+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4‐N) cycling from the belowground environment up toSphagnumand its associated microbiome, we identified a series of cascading impacts to theSphagnumphytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant‐available NH4‐N in surface peat, excess N accumulated inSphagnumtissue, and N2fixation activity decreased. Elevated CO2offset the effects of warming, disrupting the accumulation of N in peat andSphagnumtissue. Methane concentrations in porewater increased with warming irrespective of CO2treatment, resulting in a ~10× rise in methanotrophic activity withinSphagnumfrom the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane‐induced N2fixation and significant losses of keystone microbial taxa. In addition to changes in theSphagnummicrobiome, we observed ~94% mortality ofSphagnumbetween the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N‐availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of theSphagnumphytobiome to rising temperatures and atmospheric CO2concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.more » « less
-
Abstract Profiles of oxygen measurements from Argo profiling floats now vastly outnumber shipboard profiles. To correct for drift, float oxygen data are often initially adjusted to deployment casts, ship‐based climatologies, or, recently, measurements of atmospheric oxygen for in situ calibration. Air calibration enables accurate measurements in the upper ocean but may not provide similar accuracy at depth. Using a quality controlled shipboard data set, we find that the entire Argo oxygen data set is offset relative to shipboard measurements (float minus ship) at pressures of 1,450–2,000 db by a median of −1.9 μmol kg−1(mean ± SD of −1.9 ± 3.9, 95% confidence interval around the mean of {−2.2, −1.6}) and air‐calibrated floats are offset by −2.7 μmol kg−1(−3.0 ± 3.4 (CI95%{−3.7, −2.4}). The difference between float and shipboard oxygen is likely due to offsets in the float oxygen data and not oxygen changes at depth or biases in the shipboard data set. In addition to complicating the calculation of long‐term ocean oxygen changes, these float oxygen offsets impact the adjustment of float nitrate and pH measurements, therefore biasing important derived quantities such as the partial pressure of CO2(pCO2) and dissolved inorganic carbon. Correcting floats with air‐calibrated oxygen sensors for the float‐ship oxygen offsets alters float pH by a median of 3.0 mpH (3.1 ± 3.7) and float‐derived surfacepCO2by −3.2 μatm (−3.2 ± 3.9). This adjustment to floatpCO2represents half, or more, of the bias in float‐derivedpCO2reported in studies comparing floatpCO2to shipboardpCO2measurements.more » « less
An official website of the United States government
