Abstract An application of multi‐component milling is described to achieve a decolorization by dismantling the orange‐red zwitterionic cocrystal (PDA)∙(APAP) (wherePDA= 2,4‐pyridinedicarboxylic acid,APAP= acetaminophen) usingn,n′‐BPE(BPE=trans‐1,2‐bis(n‐pyridylethylene and forn=n′ = 3 or 4). Each ofn,n′‐BPEforms a colorless hydrogen‐bonded cocrystal withPDA. 
                        more » 
                        « less   
                    
                            
                            Absolute stereochemical determination of 1,2‐diols via complexation with dinaphthyl borinic acid
                        
                    
    
            Abstract Rapid derivatization of chiral 1,2‐diols with dinaphthyl borinic acid (DBA) leads to a cyclic boronate, enabling the absolute stereochemical prediction via exciton‐coupled circular dichroic (ECCD) of the naphthyl groups. Aryl‐ and alkyl‐substituted 1,2‐diols derivatized withDBAyield a predictable ECCD, which is also in agreement with theoretical predictions derived from computationally minimized structures. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1856335
- PAR ID:
- 10458063
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chirality
- Volume:
- 32
- Issue:
- 6
- ISSN:
- 0899-0042
- Page Range / eLocation ID:
- p. 817-823
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper CoresAbstract Coupled dinuclear copper oxygen cores (Cu2O2) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2transport and substrate oxidation in many organisms.μ‐1,2‐cisperoxido dicopper cores (CP) have been proposed as key structures in the early stages of O2binding in these proteins; their reversible isomerization to other Cu2O2cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallicCPcores in biological and synthetic systems, the properties and reactivity ofCPCu2O2species remain largely unexplored. Herein, we report the reversible interconversion ofμ‐1,2‐transperoxido (TP) andCPdicopper cores. CaIImediates this process by reversible binding at the Cu2O2core, highlighting the unique capability for metal‐ion binding events to stabilize novel reactive fragments and control O2activation in biomimetic systems.more » « less
- 
            Abstract Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation.But, what controls the distribution of barium (Ba) in the oceans?Here, we investigated the Arctic Ocean Ba cycle through a one‐of‐a‐kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean‐derived waters and Baffin Bay‐derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.more » « less
- 
            Abstract Tetradecaphenyl‐p‐terphenyl (2) was synthesized from 2,3,5,6‐tetraphenyl‐1,4‐diiodobenzene (11) by two methods. Ullmann coupling of11with pentaphenyliodobenzene (9) gave compound2in 1.7 % yield, and Sonogashira coupling of11with phenylacetylene, followed by a double Diels‐Alder reaction of the product diyne12with tetracyclone (6), gave2in 1.5 % overall yield. The latter reaction also gave the monoaddition product 4‐(phenylethynyl)‐2,2′,3,3′,4′,5,5′,6,6′‐nonaphenylbiphenyl (13) in 4 % overall yield. The X‐ray structures of compounds2and13show them to possess core aromatic rings distorted into shallow boat conformations. Density functional calculations indicate that these unusual structures are not the lowest energy conformations in the gas phase and may be the result of packing forces in the crystal. In addition, while uncorrected DFT calculations indicate that the strain energy in compound2is approximately 50 kcal/mol, dispersion‐corrected DFT calculations suggest that it is essentially unstrained, due to compensating, favorable, intramolecular interactions of its many phenyl rings. An attempted synthesis of tetradecaphenyl‐o‐terphenyl (4) by reaction of diphenylhexatriyne (14) with three equivalents of tetracyclone at 350 °C gave only the diadduct 2‐(phenylethynyl)‐2′,3,3′,4,4′,5,5′,6,6′‐nonaphenylbiphenyl (15) in 17 % yield. Even higher temperatures failed to produce4and lowered the yield of15, perhaps due to rapid decomposition of the starting materials. Ullmann coupling of 3,4,5,6‐tetraphenyl‐1,2‐diiodobenzene (16) and compound9also failed to give compound4.more » « less
- 
            Abstract Co‐crystallization of the spin‐crossover (SCO) cationic complex, [Fe(1‐bpp)2]2+(1‐bpp=2,6‐bis(pyrazol‐1‐yl)pyridine) with fractionally charged organic anion TCNQδ−(0<δ<1) afforded hybrid materials [Fe(1‐bpp)2](TCNQ)3.5 ⋅ 3.5MeCN (1) and [Fe(1‐bpp)2](TCNQ)4 ⋅ 4DCE (2), where TCNQ=7,7,8,8‐tetracyanoquinodimethane, MeCN=acetonitrile, and DCE=1,2‐dichloroethane. Both materials exhibit semiconducting behavior, with the room‐temperature conductivity values of 1.1×10−4 S/cm and 1.7×10−3 S/cm, respectively. The magnetic behavior of both complexes exhibits strong dependence on the content of the interstitial solvent. Complex1undergoes a gradual temperature‐driven SCO, with the midpoint temperature ofT1/2=234 K. The partial solvent loss by1leads to the increase in theT1/2value while complete desolvation renders the material high‐spin (HS) in the entire studied temperature range. In the case of2, the solvated complex shows a gradual SCO withT1/2=166 K only when covered with a mother liquid, while the facile loss of interstitial solvent, even at room temperature, leads to the HS‐only behavior.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
