Abstract Lithium–sulfur batteries are promising candidates for next‐generation energy storage devices due to their outstanding theoretical energy density. However, they suffer from low sulfur utilization and poor cyclability, greatly limiting their practical implementation. Herein, we adopted a phosphate‐functionalized zirconium metal–organic framework (Zr‐MOF) as a sulfur host. With their porous structure, remarkable electrochemical stability, and synthetic versatility, Zr‐MOFs present great potential in preventing soluble polysulfides from leaching. Phosphate groups were introduced to the framework post‐synthetically since they have shown a strong affinity towards lithium polysulfides and an ability to facilitate Li ion transport. The successful incorporation of phosphate in MOF‐808 was demonstrated by a series of techniques including infrared spectroscopy, solid‐state nuclear magnetic resonance spectroscopy, and X‐ray pair distribution function analysis. When employed in batteries, phosphate‐functionalized Zr‐MOF (MOF‐808‐PO4) exhibits significantly enhanced sulfur utilization and ion diffusion compared to the parent framework, leading to higher capacity and rate capability. The improved capacity retention and inhibited self‐discharge rate also demonstrate effective polysulfide encapsulation utilizing MOF‐808‐PO4. Furthermore, we explored their potential towards high‐density batteries by examining the cycling performance at various sulfur loadings. Our approach to correlate structure with function using hybrid inorganic–organic materials offers new chemical design strategies for advancing battery materials.
more »
« less
Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling
Abstract This work demonstrates a new approach in using metal organic framework (MOF) materials to improve Li metal batteries, a burgeoning rechargeable battery technology. Instead of using the MIL‐125‐Ti MOF structure directly, the material is decomposed into intimately‐mixed amorphous titanium dioxide and crystalline terephthalic acid. The resulting composite material outperforms the oxide alone, the organic component alone, and the parent MOF in suppressing Li dendrite growth and extending cycle life of Li metal electrodes. Coated on a commercial polypropylene separator, this material induces the formation of a desirable solid electrolyte interphase layer comprising mechanically flexible organic species and ionically conductive lithium nitride species, which in turn leads to Li||Cu and Li||Li cells that can stably operate for hundreds of charging–discharging cycles. In addition, this material strongly adsorbs lithium polysulfides and can also benefit the cathode of lithium–sulfur batteries.
more »
« less
- Award ID(s):
- 1903342
- PAR ID:
- 10458088
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 30
- Issue:
- 10
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium–sulfur (Li–S) batteries have great potential as next generation energy storage devices. However, the redox chemistry mechanism involves the generation of solubilized lithium polysulfides, which can lead to leaching of the active material and, consequently, passivated electrodes and diminished capacities. Chemical tethering of lithium polysulfides to materials in the sulfur cathode is a promising approach for resolving this issue in Li–S batteries. Borrowing from the field of synthetic chemistry, we utilize maleimide functional groups in a Zr-based metal–organic framework to chemically interact with polysulfides through the Michael Addition reaction. A combination of molecular and solid-state spectroscopies confirms covalent attachment of Li 2 S x to the maleimide functionality. When integrated into Li–S cathodes, the maleimide-functionalized framework exhibits notable performance enhancements over that of the unfunctionalized material, revealing the promise of polysulfide anchors for Li–S battery cycling.more » « less
-
Despite great promise as next-generation high-capacity energy storage devices, lithium–sulfur batteries still face technical challenges in long-term cyclability. With their porous structures and facile synthesis, metal–organic frameworks (MOFs) are tunable platforms for understanding polysulfide redox and can serve as effective sulfur hosts for lithium–sulfur batteries. This feature article describes our design strategies to tailor MOF properties such as polysulfide affinity, ionic conductivity, and porosity for promoting active material utilization and charge transport efficiency. We also present engineering approaches for implementing MOF-based sulfur cathodes for lithium–sulfur batteries with high volumetric density and under low temperature operation. Our studies provide fundamental insights into sulfur–host interactions and polysulfide electrochemistry in the presence of porous matrices, inspiring future designs of advanced batteries.more » « less
-
Metal–organic frameworks (MOFs) have been an area of intense research for their high porosity and synthetic tunability, which afford them controllable physical and chemical properties for various applications. In this study, we demonstrate that functionalized MOFs can be used to mitigate the so-called polysulfide shuttle effect in lithium–sulfur batteries, a promising next-generation energy storage device. UiO-66-OH, a zirconium-based MOF with 2-hydroxyterephthalic acid, was functionalized with a phosphorus chloride species that was subsequently used to tether polysulfides. In addition, a molecular chlorophosphorane was synthesized as a model system to elucidate the chemical reactivity of the phosphorus moiety. The functionalized MOFs were then used as a cathode additive in coin cell batteries to inhibit the dissolution of polysulfides in solution. Through this work, we show that the functionalization of MOF with phosphorus enhances polysulfide redox and thereby capacity retention in Li–S batteries. While demonstrated here for polysulfide tethering in batteries, we envision this linker functionalization strategy could be more broadly utilized in separations, sensing, or catalysis applications.more » « less
-
Abstract Rechargeable Mg batteries are a promising energy storage technology to overcome the limitations inherent to Li ion batteries. A critical challenge in advancing Mg batteries is the lack of suitable cathode materials. In this work, we report a cathode design that incorporates S functionality into two‐dimensional metal‐organic‐frameworks (2D‐MOFs). This new cathode material enables good Mg2+storage capacity and outstanding cyclability. It was found that upon the initial Mg2+insertion and disinsertion, there is an apparent structural transformation that crumbles the layered 2D framework, leading to amorphization. The resulting material serves as the active material to host Mg2+through reduction and/or oxidation of S and, to a limited extent, O. The reversible nature of S and O redox chemistry was confirmed by spectroscopic characterizations and validated by density functional calculations. Importantly, during the Mg2+insertion and disinsertion process, the 2D nature of the framework was maintained, which plays a key role in enabling the high reversibility of the MOF cathode.more » « less
An official website of the United States government
