skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photophoretic Levitation of Macroscopic Nanocardboard Plates
Abstract Scaling down miniature rotorcraft and flapping‐wing flyers to sub‐centimeter dimensions is challenging due to complex electronics requirements, manufacturing limitations, and the increase in viscous damping at low Reynolds numbers. Photophoresis, or light‐driven fluid flow, was previously used to levitate solid particles without any moving parts, but only with sizes of 1–20 µm. Here, architected metamaterial plates with 50 nm thickness are leveraged to realize photophoretic levitation at the millimeter to centimeter scales. Instead of creating lift through conventional rotors or wings, the nanocardboard plates levitate due to light‐induced thermal transpiration through microchannels within the plates, enabled by their extremely low mass and thermal conductivity. At atmospheric pressure, the plates hover above a solid substrate at heights of ≈0.5 mm by creating an air cushion beneath the plate. Moreover, at reduced pressures (10–200 Pa), the increased speed of thermal transpiration through the plate's channels creates an air jet that enables mid‐air levitation and allows the plates to carry small payloads heavier than the plates themselves. The macroscopic metamaterial structures demonstrate the potential of this new mechanism of flight to realize nanotechnology‐enabled flying vehicles without any moving parts in the Earth's upper atmosphere and at the surface of other planets.  more » « less
Award ID(s):
1845933
PAR ID:
10458120
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
16
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although general purpose robotic manipulators are becoming more capable at manipulating various objects, their ability to manipulate millimeter-scale objects are usually limited. On the other hand, ultrasonic levitation devices have been shown to levitate a large range of small objects, from polystyrene balls to living organisms. By controlling the acoustic force fields, ultrasonic levitation devices can compensate for robot manipulator positioning uncertainty and control the grasping force exerted on the target object. The material agnostic nature of acoustic levitation devices and their ability to dexterously manipulate millimeter-scale objects make them appealing as a grasping mode for general purpose robots. In this work, we present an ultrasonic, contact-less manipulation device that can be attached to or picked up by any general purpose robotic arm, enabling millimeter-scale manipulation with little to no modification to the robot itself. This device is capable of performing the very first phase-controlled picking action on acoustically reflective surfaces. With the manipulator placed around the target object, the manipulator can grasp objects smaller in size than the robot's positioning uncertainty, trap the object to resist air currents during robot movement, and dexterously hold a small and fragile object, like a flower bud. Due to the contact-less nature of the ultrasound-based gripper, a camera positioned to look into the cylinder can inspect the object without occlusion, facilitating accurate visual feature extraction. 
    more » « less
  2. Verberck, Bart (Ed.)
    The Leidenfrost effect—the levitation and hovering of liquid droplets on hot solid surfaces—generally requires a sufficiently high substrate temperature to activate liquid vaporization. Here we report the modulation of Leidenfrost-like jumping of sessile water microdroplets on micropillared surfaces at a relatively low temperature. Compared to traditional Leidenfrost effect occurring above 230 °C, the fin-array-like micropillars enable water microdroplets to levitate and jump off the surface within milliseconds at a temperature of 130 °C by triggering the inertia-controlled growth of individual vapour bubbles at the droplet base. We demonstrate that droplet jumping, resulting from momentum interactions between the expanding vapour bubble and the droplet, can be modulated by tailoring of the thermal boundary layer thickness through pillar height. This enables regulation of the bubble expansion between the inertia-controlled mode and the heat-transfer-limited mode. The two bubble-growth modes give rise to distinct droplet jumping behaviours characterized by constant velocity and constant energy regimes, respectively. This heating strategy allows the straightforward purging of wetting liquid droplets on rough or structured surfaces in a controlled manner, with potential applications including the rapid removal of fouling media, even when located in surface cavities. 
    more » « less
  3. Laboratory experimentation of electromechanical systems can be challenging from a practical perspective and offers limited flexibility once built. Aiming at maximizing versatility and accelerating laboratory research, we propose a method of electric motor emulation via power electronics. This paper is focused on constant-frequency air conditioners based on single-phase induction machines and we show how to control a single-phase inverter to emulate the ac-terminal dynamics of such a system serving thermal loads. This approach offers a convenient method of high-bandwidth air conditioner load emulation without moving parts. Such a setup could be used to realize electrical experiments that mimic residential load dynamics with high fidelity. After outlining the system model, we propose a practical voltage-source inverter implementation and conclude with experiments on a 600 W converter. 
    more » « less
  4. Abstract The realization of low thermal conductivity at high temperatures (0.11 W m−1K−1800 °C) in ambient air in a porous solid thermal insulation material, using stable packed nanoparticles of high‐entropy spinel oxide with 8 cations (HESO‐8 NPs) with a relatively high packing density of ≈50%, is reported. The high‐density HESO‐8 NP pellets possess around 1000‐fold lower thermal diffusivity than that of air, resulting in much slower heat propagation when subjected to a transient heat flux. The low thermal conductivity and diffusivity are realized by suppressing all three modes of heat transfer, namely solid conduction, gas conduction, and thermal radiation, via stable nanoconstriction and infrared‐absorbing nature of the HESO‐8 NPs, which are enabled by remarkable microstructural stability against coarsening at high temperatures due to the high entropy. This work can elucidate the design of the next‐generation high‐temperature thermal insulation materials using high‐entropy ceramic nanostructures. 
    more » « less
  5. We consider a slowly condensing droplet levitating near the surface of an evaporating layer, and develop a mathematical model to describe diffusion, heat transfer and fluid flow in the system. The method of separation of variables in bipolar coordinates is used to obtain the series expansions for temperature, vapour concentration and the Stokes stream function. This framework allows us to determine temperature profiles and condensation rates at the surface of the droplet, and to calculate the upward force that allows the droplet to levitate. Somewhat counter-intuitively, condensation is found to be the strongest near the bottom of the droplet, which faces the hot liquid layer. The experimentally observed deviations from the classical law predicting the square of the radius to grow linearly in time are explained by the model. A spatially non-uniform phase change rate results in a contribution to the force not considered in previous studies, and comparable to droplet weight and the upward force calculated from the Stokes drag law. The levitation conditions are formulated accordingly, resulting in the prediction of levitation height as a function of droplet size without any fitting parameters. A simple criterion is formulated to define the parameter ranges in which levitation is possible. The results are in good agreement with the experimental data except that the model tends to slightly underpredict the levitation height. 
    more » « less