skip to main content

Title: Electropneumotactile Stimulation: Multimodal Haptic Actuators Enabled by a Stretchable Conductive Polymer on Inflatable Pockets

A type of haptic device is described that delivers two modes of stimulation simultaneously and at the same location on the skin. The two modes of stimulation are mechanical (delivered pneumatically by inflatable air pockets embedded within a silicone elastomer) and electrical (delivered by a conductive polymer). The key enabling aspect of this work is the use of a highly plasticized conductive polymer based on poly(3,4‐ethylenedioxythiphene) (PEDOT) blended with elastomeric polyurethane (PU). To fabricate the “electropneumotactile” device, the polymeric electrodes are overlaid directly on top of the elastomeric pneumatic actuator pockets. Co‐placement of the pneumatic actuators and the electrotactile electrodes is enabled by the stretchability of the PEDOT:tosylate/PU blend, allowing the electrotactiles to conform to underlying pneumatic pockets under deformation. The blend of PEDOT and PU has a Young's modulus of ≈150 MPa with little degradation in conductivity following repeated inflation of the air pockets. The ability to perceive simultaneous delivery of two sensations to the same location on the skin is supported by experiments using human subjects. These results show that participants can successfully detect the location of pneumatic stimulation and whether electrotactile stimulation is delivered (yes/no) at a rate significantly above chance (mean accuracy = 94%).

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cutaneous muscles drive the texture‐modulation behavior of cephalopods by protruding several millimeters out of the skin. Inspired by cephalopods, a self‐morphing, stretchable smart skin containing embedded‐printed electrodes and actuated by Twisted Spiral Artificial Muscles (TSAMs) is proposed. Electrothermally actuated TSAMs are manufactured from inexpensive polymer fibers to mimic the papillae muscles of cephalopods. These spirals can produce strains of nearly 2000% using a voltage of only 0.02 V mm−1. Stretchable and low‐resistance liquid metal electrodes are embedded‐printed inside the self‐morphing skin to facilitate the electrothermal actuation of TSAMs. Theoretical and numerical models are proposed to describe the embedded printing of low‐viscosity Newtonian liquid metals as conductive electrodes in a soft elastomeric substrate. Experimental mechanical tests are performed to demonstrate the robustness and electrical stability of the electrodes. Two smart skin prototypes are fabricated to highlight the capabilities of the proposed self‐morphing system, including a texture‐modulating wearable soft glove and a waterproof skin that emulates the texture‐modulation behavior of octopi underwater. The proposed self‐morphing stretchable smart skin can find use in a wide range of applications, such as refreshable Braille displays, haptic feedback devices, turbulence tripping, and antifouling devices for underwater vehicles.

    more » « less
  2. Abstract

    Epidermal sensors for remote healthcare and performance monitoring require the ability to operate under the effects of bodily motion, heat, and perspiration. Here, the use of purpose‐synthesized polymer‐based dry electrodes and graphene‐based strain gauges to obtain measurements of swallowed volume under typical conditions of exercise is evaluated. The electrodes, composed of the common conductive polymer poly(3,4 ethylenedioxythiophene) (PEDOT) electrostatically bound to poly(styrenesulfonate)‐b‐poly(poly(ethylene glycol) methyl ether acrylate) (PSS‐b‐PPEGMEA), collect surface electromyography (sEMG) signals on the submental muscle group, under the chin. Simultaneously, the deformation of the surface of the skin is measured using strain gauges comprising single‐layer graphene supporting subcontinuous coverage of gold and a highly plasticized composite containing PEDOT:PSS. Together, these materials permit high stretchability, high resolution, and resistance to sweat. A custom printed circuit board (PCB) allows this multicomponent system to acquire strain and sEMG data wirelessly. This sensor platform is tested on the swallowing activity of a cohort of 10 subjects while walking or cycling on a stationary bike. Using a machine learning (ML) model, it is possible to predict swallowed volume with absolute errors of 36% for walking and 43% for cycling.

    more » « less
  3. The goal of this study was to perform in situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in peripheral nerves to create a soft, precisely located injectable conductive polymer electrode for bi-directional communication. Intraneural PEDOT polymerization was performed to target both outer and inner fascicles via custom fabricated 3D printed cuff electrodes and monomer injection strategies using a combination electrode-cannula system. Electrochemistry, histology, and laser light sheet microscopy revealed the presence of PEDOT at specified locations inside of peripheral nerve. This work demonstrates the potential for using in situ PEDOT electrodeposition as an injectable electrode for recording and stimulation of peripheral nerves. 
    more » « less
  4. Existing tactile stimulation technologies powered by small actuators offer low-resolution stimuli compared to the enormous mechanoreceptor density of human skin. Arrays of soft pneumatic actuators initially show promise as small-resolution (1- to 3-mm diameter), highly conformable tactile display strategies yet ultimately fail because of their need for valves bulkier than the actuators themselves. In this paper, we demonstrate an array of individually addressable, soft fluidic actuators that operate without electromechanical valves. We achieve this by using microscale combustion and localized thermal flame quenching. Precisely, liquid metal electrodes produce sparks to ignite fuel lean methane–oxygen mixtures in a 5-mm diameter, 2-mm tall silicone cylinder. The exothermic reaction quickly pressurizes the cylinder, displacing a silicone membrane up to 6 mm in under 1 ms. This device has an estimated free-inflation instantaneous stroke power of 3 W. The maximum reported operational frequency of these cylinders is 1.2 kHz with average displacements of ∼100 µm. We demonstrate that, at these small scales, the wall-quenching flame behavior also allows operation of a 3 × 3 array of 3-mm diameter cylinders with 4-mm pitch. Though we primarily present our device as a tactile display technology, it is a platform microactuator technology with application beyond this one.

    more » « less
  5. Abstract

    This work reports a three-dimensional polymer interdigitated pillar electrostatic actuator that can produce force densities 5–10× higher than those of biological muscles. The theory of operation, scaling, and stability is investigated using analytical and FEM models. The actuator consists of two high-density arrays of interdigitated pillars that work against a restoring force generated by an integrated flexure spring. The actuator architecture enables linear actuation with higher displacements and pull-in free actuation to prevent the in-use stiction associated with other electrostatic actuators. The pillars and springs are 3D printed together in the same structure. The pillars are coated with a gold–palladium alloy layer to form conductive electrodes. The space between the pillars is filled with liquid dielectrics for higher breakdown voltages and larger electrostatic forces due to the increase in the dielectric constant. We demonstrated a prototype actuator that produced a maximum work density of 54.6 µJ/cc and an electrical-to-mechanical energy coupling factor of 32% when actuated at 4000 V. The device was operated for more than 100,000 cycles with no degradation in displacements. The flexible polymer body was robust, allowing the actuator to operate even after high mechanical force impact, which was demonstrated by operation after drop tests. As it is scaled further, the reported actuator will enable soft and flexible muscle-like actuators that can be stacked in series and parallel to scale the resulting forces. This work paves the way for high-energy density actuators for microrobotic applications.

    more » « less