skip to main content


Title: Photo‐Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA
Abstract

Confronted with the rapid evolution and dissemination of antibiotic resistance, there is an urgent need to develop alternative treatment strategies for drug‐resistant pathogens. Here, an unconventional approach is presented to restore the susceptibility of methicillin‐resistantS. aureus(MRSA) to a broad spectrum of conventional antibiotics via photo‐disassembly of functional membrane microdomains. The photo‐disassembly of microdomains is based on effective photolysis of staphyloxanthin, the golden carotenoid pigment that gives its name. Upon pulsed laser treatment, cell membranes are found severely disorganized and malfunctioned to defense antibiotics, as unveiled by membrane permeabilization, membrane fluidification, and detachment of membrane protein, PBP2a. Consequently, the photolysis approach increases susceptibility and inhibits development of resistance to a broad spectrum of antibiotics including penicillins, quinolones, tetracyclines, aminoglycosides, lipopeptides, and oxazolidinones. The synergistic therapy, without phototoxicity to the host, is effective in combating MRSA both in vitro and in vivo in a mice skin infection model. Collectively, this endogenous chromophore‐targeted phototherapy concept paves a novel platform to revive conventional antibiotics to combat drug‐resistantS. aureusinfections as well as to screen new lead compounds.

 
more » « less
NSF-PAR ID:
10458276
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
7
Issue:
6
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rise in bacterial resistance to common antibiotics has raised an increased need for alternative treatment strategies. The natural antibacterial product, 18β-glycyrrhetinic acid (GRA) has shown efficacy against community-associated methicillin-resistant Staphylococcus aureus (MRSA), although its interactions against planktonic and biofilm modes of growth remain poorly understood. This investigation utilized biochemical and metabolic approaches to further elucidate the effects of GRA on MRSA. Prolonged exposure of planktonic MRSA cell cultures to GRA resulted in increased production of staphyloxanthin, a pigment known to exhibit antioxidant and membrane-stabilizing functions. Then, 1D 1H NMR analyses of intracellular metabolite extracts from MRSA treated with GRA revealed significant changes in intracellular polar metabolite profiles, including increased levels of succinate and citrate, and significant reductions in several amino acids, including branch chain amino acids. These changes reflect the MRSA response to GRA exposure, including potentially altering its membrane composition, which consumes branched chain amino acids and leads to significant energy expenditure. Although GRA itself had no significant effect of biofilm viability, it seems to be an effective biofilm disruptor. This may be related to interference with cell–cell aggregation, as treatment of planktonic MRSA cultures with GRA leads to a significant reduction in micro-aggregation. The dispersive nature of GRA on MRSA biofilms may prove valuable for treatment of such infections and could be used to increase susceptibility to complementary antibiotic therapeutics. 
    more » « less
  2. Abstract

    The Gram‐positive bacteria, methicillin‐resistantStaphylococcus aureus(MRSA) and Gram‐negative bacteria,Acinetobacter baumannii, are pathogens responsible for millions of nosocomial infections worldwide. Due to the threat of bacteria evolving resistance to antibiotics, scientists are constantly looking for new classes of compounds to treat infectious diseases. The biphenolic analogs of honokiol that were most potent against oral bacteria had similar bioactivity against MRSA. However, all the compounds proved ineffective againstA. baumannii. The inability to inhibitA. baumanniiis due to the difficult‐to‐penetrate lipopolysaccharide‐coated outer membrane that makes it challenging for antibiotics to enter Gram‐negative bacteria. TheC 2scaffold was optimized from the inhibition of Gram‐positive bacteria to broad‐spectrum antibacterial compounds that inhibit the dangerous Gram‐negative pathogenA. baumannii.

     
    more » « less
  3. Abstract

    The World Health Organization has declared antibiotic resistance “one of the biggest threats to global health.” Mounting evidence suggests that antibiotic use in industrial‐scale hog farming is contributing to the spread of antibiotic‐resistantStaphylococcus aureus. To capture available evidence on these risks, we searched peer‐reviewed studies published before June 2017 and conducted a meta‐analysis of these studies’ estimates of the prevalence of swine‐associated, antibiotic‐resistantS. aureusin animals, humans, and the environment. The 166 relevant studies revealed consistent evidence of livestock‐associated methicillin‐resistantS. aureus(MRSA) in hog herds (55.3%) raised with antibiotics. MRSA prevalence was also substantial in slaughterhouse pigs (30.4%), industrial hog operation workers (24.4%), and veterinarians (16.8%). The prevalence of swine‐associated, multidrug‐resistantS. aureus(MDRSA)—with resistance to three or more antibiotics—is not as well documented. Nonetheless, sufficient studies were available to estimate MDRSA pooled prevalence in conventional hog operation workers (15.0%), workers’ household members (13.0%), and community members (5.37%). Evidence also suggests that antibiotic‐resistantS. aureuscan be present in air, soil, water, and household surface samples gathered in or near high‐intensity hog operations. An important caveat is that prevalence estimates for humans reflect colonization, not active infection, and the health risks of colonization remain poorly understood. In addition, these pooled results may not represent risks in specific locations, due to wide geographic variation. Nonetheless, these results underscore the need for additional preventive action to stem the spread of antibiotic‐resistant pathogens from livestock operations and a streamlined reporting system to track this risk.

     
    more » « less
  4. Abstract

    Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such asEscherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such asStaphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such asS. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry

     
    more » « less
  5. Abstract

    The continuous rise of multi-drug resistant pathogenic bacteria has become a significant challenge for the health care system. In particular, novel drugs to treat infections of methicillin-resistant Staphylococcus aureus strains (MRSA) are needed, but traditional drug discovery campaigns have largely failed to deliver clinically suitable antibiotics. More than simply new drugs, new drug discovery approaches are needed to combat bacterial resistance. The recently described phenomenon of copper-dependent inhibitors has galvanized research exploring the use of metal-coordinating molecules to harness copper’s natural antibacterial properties for therapeutic purposes. Here, we describe the results of the first concerted screening effort to identify copper-dependent inhibitors of Staphylococcus aureus. A standard library of 10 000 compounds was assayed for anti-staphylococcal activity, with hits defined as those compounds with a strict copper-dependent inhibitory activity. A total of 53 copper-dependent hit molecules were uncovered, similar to the copper independent hit rate of a traditionally executed campaign conducted in parallel on the same library. Most prominent was a hit family with an extended thiourea core structure, termed the NNSN motif. This motif resulted in copper-dependent and copper-specific S. aureus inhibition, while simultaneously being well tolerated by eukaryotic cells. Importantly, we could demonstrate that copper binding by the NNSN motif is highly unusual and likely responsible for the promising biological qualities of these compounds. A subsequent chemoinformatic meta-analysis of the ChEMBL chemical database confirmed the NNSNs as an unrecognized staphylococcal inhibitor, despite the family’s presence in many chemical screening libraries. Thus, our copper-biased screen has proven able to discover inhibitors within previously screened libraries, offering a mechanism to reinvigorate exhausted molecular collections.

     
    more » « less