skip to main content


Title: Dynamic Current–Voltage Analysis of Oxygen Vacancy Mobility in Praseodymium‐Doped Ceria over Wide Temperature Limits

Solid‐state mixed ionic–electronic conductors (MIECs) in which ionic transport is commonly accompanied by predominant electronic conductivity underpin key technologies and require universal characterization methods for monitoring transport at the nanoscale, at both high and near ambient temperatures, the latter being especially challenging. In this study, a novel dynamic current–voltage analysis technique is utilized to decouple ionic and electronic transport properties from each other. The versatility of the method is demonstrated by enabling measurement of the oxygen vacancy mobility in Pr0.1Ce0.9O2−δthin films, across an unusually wide temperature range, from 35 to 500 °C. Despite the presence of predominant electronic conduction, the oxygen vacancy mobility in Pr0.1Ce0.9O2−δis measured, being 6.8 × 10−6cm2V−1s−1at 500 °C, decreasing by seven orders of magnitude down to 35 °C, and following a single thermal activation energy of 0.82 ± 0.02 eV. A comparison with previous reports on oxygen vacancy transport and with the one derived in this study from impedance spectroscopy, interpreted with the Jamnik–Maier model, further confirms the dynamic current–voltage analysis results. This method can more generally be applied to other types of MIECs, thereby enabling deeper insights into mobile ionic defect transport and accompanying thermodynamic properties.

 
more » « less
NSF-PAR ID:
10458277
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
11
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mixed ionic–electronic conductors offer chemical and electrical means for active tuning of their optical constants, e.g., with variations in oxygen non‐stoichiometry in Pr0.1Ce0.9O2–δ, enabling implementation of adaptive thin film optical devices. In situ chemo‐tuning of the extinction coefficient in Pr0.1Ce0.9O2–δat elevated temperatures is demonstrated and a tuning model is provided that treats the interdependence of mobile oxygen vacancies and small polarons coupled to variations in optically active praseodymium ions. Furthermore, a new means for electro‐tuning of the optical constants of mixed ionic–electronic conductors is demonstrated experimentally and modeled for Pr0.1Ce0.9O2–δthin films deposited on grid‐like electrode structures. Modeling of non‐steady‐state optical transmittance modulations in the latter allows for estimation of oxygen vacancy mobility that determines the switching speed of the device. Quenched‐in values ofnrandkto room temperature become nonvolatile, providing a modulation range in the extinction coefficient of Δk ≈ 0.1 (change of ≈800%) and in the refractive index of Δnr ≈ 0.1 (relative to initialnrof ≈2.35). Key figures of merit, including transmission optical modulation of ≈0.04 per 1 mV nm–1, switching energy per area of 1.9 nJ µm–2, and switching times of seconds, are demonstrated, with further improvements possible.

     
    more » « less
  2. Abstract

    Enhanced ionic mobility in mixed ionic and electronic conducting solids contributes to improved performance of memristive memory, energy storage and conversion, and catalytic devices. Ionic mobility can be significantly depressed at reduced temperatures, for example, due to defect association and therefore needs to be monitored. Measurements of ionic transport in mixed conductors, however, proves to be difficult due to dominant electronic conductivity. This study examines the impact of different levels of quenched‐in oxygen deficiency on the oxygen vacancy mobility near room temperature. A praseodymium doped ceria (Pr0.1Ce0.9O2–δ) film is grown by pulsed laser deposition and annealed in various oxygen partial pressures to modify its oxygen vacancy concentration. Changes in film non‐stoichiometry are monitored by tracking the optical absorption related to the oxidation state of Pr ions. A 13‐fold increase in ionic mobility at 60 °C for increases in oxygen non‐stoichiometry from 0.032 to 0.042 is detected with negligible changes in migration enthalpy and large changes in pre‐factor. Several factors potentially contributing to the large pre‐factor changes are examined and discussed. Insights into how ionic defect concentration can markedly impact ionic mobility should help in elucidating the origins of variations seen in nanoionic devices.

     
    more » « less
  3. In oxide materials, an increase in oxygen vacancy concentration often results in lattice expansion, a phenomenon known as chemical expansion that can introduce detrimental stresses and lead to potential device failure. One factor often implicated in the chemical expansion of materials is the degree of localization of the multivalent cation electronic states. When an oxygen is removed from the lattice and a vacancy forms, it is believed that the two released electrons reduce multivalent cations and expand the lattice, with more localized cation states resulting in larger expansion. In this work, we computationally and experimentally studied the chemical expansion of two Pr-based perovskites that exhibit ultra-low chemical expansion, PrGa 1− x Mg x O 3− δ and BaPr 1− x Y x O 3− δ , and their parent compounds PrGaO 3− δ and BaPrO 3− δ . Using density functional theory, the degree of localization of the Pr-4f electrons was varied by adjusting the Hubbard U parameter. We find that the relationship between Pr-4f electron localization and chemical expansion exhibits more complexity than previously established. This relationship depends on the nature of the states filled by the two electrons, which may not necessarily involve the reduction of Pr. F ′-center defects can form if the reduction of Pr is unfavorable, leading to smaller chemical expansions. If hole states are present in the material, the states filled by the electrons can be Pr-4f and/or O-2p hole states depending on the degree of Pr-4f localization. The O-2p holes are more delocalized than the Pr-4f holes, resulting in smaller chemical expansions when the O-2p holes are filled. X-ray photoelectron spectroscopy reveals low concentrations of Pr 4+ in PrGa 0.9 Mg 0.1 O 3− δ and BaPr 0.9 Y 0.1 O 3− δ , supporting the possible role of O-2p holes in the low chemical expansions exhibited by these materials. This work highlights the non-trivial effects of electron localization on chemical expansion, particularly when hole states are present, pointing to design strategies to tune the chemical expansion of materials. 
    more » « less
  4. This work demonstrates, for the first time, that a variety of disparate and technologically-relevent thermal, mechanical, and electrochemical oxygen-exchange material properties can all be obtained from in situ , current-collector-free wafer curvature measurements. Specifically, temperature or oxygen partial pressure induced changes in the curvature of 230 nm thick (100)-oriented Pr 0.1 Ce 0.9 O 1.95−x (10PCO) films atop 200 μm thick single crystal yttria stabilized zirconia or magnesium oxide substrates were used to measure the biaxial modulus, Young's modulus, thermal expansion coefficient, thermo-chemical expansion coefficient, oxygen nonstoichiometry, chemical oxygen surface exchange coefficient, oxygen surface exchange resistance, thermal stress, chemical stress, thermal strain, and chemical strain of the model mixed ionic electronic conducting material 10PCO. The (100)-oriented thin film 10PCO thermal expansion coefficient, thermo-chemical expansion coefficient, oxygen nonstoichiometry, and Young's modulus (which is essentially constant, at ∼200 MPa, over the entire 280–700 °C temperature range in air) measured here were similar to those from other bulk and thin film 10PCO studies. In addition, the measured PCO10 oxygen surface coefficients were in agreement with those reported by other in situ , current-collector-free techniques. Taken together, this work highlights the advantages of using a sample's mechanical response, instead of the more traditional electrical response, to probe the electrochemical properties of the ion-exchange materials used in solid oxide fuel cell, solid oxide electrolysis cell, gas-sensing, battery, emission control, water splitting, water purification, and other electrochemically-active devices. 
    more » « less
  5. Abstract

    Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability tocontinuouslytune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ(LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (withδ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (withδ= 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications.

     
    more » « less