skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using an Unmanned Aerial System to Characterize Low Altitude Ozone Gradient Measurements in a Northern Wisconsin Forest
Ozone deposition measurements in forested environments are of interest to constrain background processes in models as well as better identify ozone exposure to the ecosystem. Ozone deposition in forested environments can arise through stomatal conductance in plants and dry deposition to soils. As a part of the CHEESEHEAD 19 field campaign, ozone measurements were obtained at two different heights (120 m and 30 m) on a tall tower. In comparison to those measurements, a hexacopter UAS was flown with a small, lightweight ozone monitor and meteorological sensor measuring temperature and humidity. The hexacopter was hovered at certain altitudes to determine ozone concentration gradients. The vertical gradients observed will be discussed in context of tower ozone concentration measurements and other meteorological parameters  more » « less
Award ID(s):
1918850
PAR ID:
10458426
Author(s) / Creator(s):
Date Published:
Journal Name:
Transactions American Geophysical Union
ISSN:
2379-6723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ozone is a pollutant formed in the atmosphere by photochemical processes involving nitrogen oxides (NOx) and volatile organic compounds (VOCs) when exposed to sunlight. Tropospheric boundary layer ozone is regularly measured at ground stations and sampled infrequently through balloon, lidar, and crewed aircraft platforms, which have demonstrated characteristic patterns with altitude. Here, to better resolve vertical profiles of ozone within the atmospheric boundary layer, we developed and evaluated an uncrewed aircraft system (UAS) platform for measuring ozone and meteorological parameters of temperature, pressure, and humidity. To evaluate this approach, a UAS was flown with a portable ozone monitor and a meteorological temperature and humidity sensor to compare to tall tower measurements in northern Wisconsin. In June 2020, as a part of the WiscoDISCO20 campaign, a DJI M600 hexacopter UAS was flown with the same sensors to measure Lake Michigan shoreline ozone concentrations. This latter UAS experiment revealed a low-altitude structure in ozone concentrations in a shoreline environment showing the highest ozone at altitudes from 20–100 m a.g.l. These first such measurements of low-altitude ozone via a UAS in the Great Lakes region revealed a very shallow layer of ozone-rich air lying above the surface. 
    more » « less
  2. In June 2020, a series of Unmanned Aerial System (UAS) flights were conducted as part of the Wisconsin’s Dynamic Influence of Shoreline Circulations on Ozone (WiscoDisco20) campaign over the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. Temperature and humidity measurements were taken using an iMet-XQ2 atmospheric sensor and ozone measurements were taken by a 2B Tech POM sensor. Both sensors were mounted on a DJI M600 Hexacopter and two flights were conducted a day, one in the morning around 8 am (CDT), and one in the afternoon around 2 pm (CDT). Each flight was broken up into three subsections to land and switch batteries, and hover altitudes were 10 meters above ground level (m AGL), 15, 30, 45, 60, 75, 90, 105, and 120 m AGL. Observations aloft were compared with observations from a regulatory ground station to verify the reliability of the UAS measurements. Using the field data compiled from June 15-19, 2020, the existence of atmospheric inversions that were introduced by east to southeast winds illustrated a clear lake breeze effect. Atmospheric inversions are sections of the atmosphere where the temperature, humidity, and pollutant composition can have sudden dramatic shifts. These inversions occurred at different heights each day, but the inversion layer’s beginning ranged from 40 m to 100 m. The inversions demonstrated a large change in both humidity and temperature, often sharply changing up to 5 °C and by up to 35% relative humidity. With this change also comes a significant increase in ozone concentration in the inversion layer compared to its surroundings, with ozone peaking in concentration at the beginning of the inversion layer. Ozone in the inversion layer was regularly found to be in excess regulatory safety standards of throughout the week. 
    more » « less
  3. The air quality at the Lake Michigan shoreline in southeastern Wisconsin is heavily influenced by the combination of Chicago area urban emissions and the meteorology over the lake. In June 2020, a multi-rotor DJI M600 Pro unmanned aerial system (UAS) equipped with a small ozone monitor (2B POM) and a meteorological sensor (iMET-XF) was flown on forecasted ozone exceedance days in the morning and evening to measure ozone, temperature, pressure and humidity profiles from 5-120 m AGL at the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. The Wisconsin DNR lakeshore air quality monitor at Chiwaukee Prairie in Kenosha, WI (AIRS ID 55-059-0019) sits 0.16 km from the shoreline and at the Wisconsin-Illinois boarder, near to where the UAS flights took place. The Chiwaukee Priaire monitoring station was equipped for an enhanced monitoring season, with a LIDAR Wind Profiler instrument. The combination of UAS measurements with the LIDAR meteorological measurements provide an understanding of the vertical structure in the meteorology of lake breeze and ozone during exceedance days. Temperature measurements aloft from the UAS show an atmospheric inversion at this site all sampling days (June 8, 9, 15-19). The ozone measurements trend with the temperature data, typically with higher ozone aloft than at the surface with a regular feature at 50-80 m AGL. We will discuss the results from the UAS with the LIDAR measurements to help understand the lake breeze influence on the local ozone measurements. 
    more » « less
  4. Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000–4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (~0.03 cm s-1 yet it underestimates measurements from a flux tower study (0.04 cm s-1 vs. 0.07 cm s-1and Amazon litterfall (0.05 cm s-1 vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere–atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution. 
    more » « less
  5. Dry deposition to the surface is one of the main removal pathways of tropospheric ozone (O3). We quantified for the first time the impact of O3 deposition to the Arctic sea ice on the planetary boundary layer (PBL) O3 concentration and budget using year-round flux and concentration observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign and simulations with a single-column atmospheric chemistry and meteorological model (SCM). Based on eddy-covariance O3 surface flux observations, we find a median surface resistance on the order of 20,000 s m−1, resulting in a dry deposition velocity of approximately 0.005 cm s−1. This surface resistance is up to an order of magnitude larger than traditionally used values in many atmospheric chemistry and transport models. The SCM is able to accurately represent the yearly cycle, with maxima above 40 ppb in the winter and minima around 15 ppb at the end of summer. However, the observed springtime ozone depletion events are not captured by the SCM. In winter, the modelled PBL O3 budget is governed by dry deposition at the surface mostly compensated by downward turbulent transport of O3 towards the surface. Advection, which is accounted for implicitly by nudging to reanalysis data, poses a substantial, mostly negative, contribution to the simulated PBL O3 budget in summer. During episodes with low wind speed (<5 m s−1) and shallow PBL (<50 m), the 7-day mean dry deposition removal rate can reach up to 1.0 ppb h−1. Our study highlights the importance of an accurate description of dry deposition to Arctic sea ice in models to quantify the current and future O3 sink in the Arctic, impacting the tropospheric O3 budget, which has been modified in the last century largely due to anthropogenic activities. 
    more » « less