skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A soil matrix capacity index to predict mineral-associated but not particulate organic carbon across a range of climate and soil pH
Award ID(s):
1832042 2224712
PAR ID:
10458480
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biogeochemistry
Volume:
165
Issue:
1
ISSN:
0168-2563
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil microbial communities play a pivotal role in controlling soil carbon cycling and its climate feedback. Accurately predicting microbial respiration in soils has been challenged by the intricate resource heterogeneity of soil systems. This makes it difficult to formulate mathematical expressions for carbon fluxes at the soil bulk scale which are fundamental for soil carbon models. Recent advances in characterizing and modeling soil heterogeneity are promising. Yet they have been independent of soil structure characterizations, hence increasing the number of empirical parameters needed to model microbial processes. Soil structure, intended as the aggregate and pore size distributions, is, in fact, a key contributor to soil organization and heterogeneity and is related to the presence of microsites and associated environmental conditions in which microbial communities are active. In this study, we present a theoretical framework that accounts for the effects of microsites heterogeneity on microbial activity by explicitly linking heterogeneity to the distribution of aggregate sizes and their resources. From the soil aggregate size distribution, we derive a mathematical expression for heterotrophic respiration that accounts for soil biogeochemical heterogeneity through measurable biophysical parameters. The expression readily illustrates how various soil heterogeneity scenarios impact respiration rates. In particular, we compare heterogeneous with homogeneous scenarios for the same total carbon substrate and microbial biomass and identify the conditions under which respiration in heterogeneous soils (soils having non-uniform distribution of carbon substrate and microbial biomass carbon across different aggregate size classes) differs from homogeneous soils (soils having uniform distribution of carbon substrate and microbial biomass carbon across different aggregate size classes). The proposed framework may allow a simplified representation of dynamic microbial processes in soil carbon models across different land uses and land covers, key factors affecting soil structure. 
    more » « less
  2. Abstract Soil physical and chemical properties play important roles in mass loss during soil–block tests but the relationship between soil properties and the decay caused by brown-rot and white-rot fungi remains unclear. The objective of this study was to investigate the soil effects on the decay resistance of pine (Pinus spp.) and poplar (Liriodendron tulipifera L.) blocks. The properties of soil from nine different sources (six from Idaho, one from Mississippi, one from Wisconsin, and one from Oregon) were characterized for soil texture, sieved bulk density, water-holding capacity, pH, organic matter, and carbon and nitrogen concentrations. The moisture content and mass loss of decayed wood samples after 8 weeks of fungal exposure were measured. At the end of the study, block moisture ranged from 30 to 200 percent and mass loss ranged from 20 to 60 percent. Despite using a range of soils, there were no direct correlations between soil properties and wood-block moisture content or mass loss. Moreover, among all the soil properties examined, no significant effect of a single soil property on wood-block moisture content and mass loss was measured. Instead, the combined effects of soil physical and chemical properties may interact to govern the decay of wood blocks in the laboratory soil–block test. 
    more » « less
  3. Abstract Monitoring soil nitrogen (N) dynamics in agroecosystems is foundational to soil health management and is critical for maximizing crop productivity in contrasting management systems. The newly established soil health indicator, autoclaved‐citrate extractable (ACE) protein, measures an organically bound pool of N. However, the relationship between ACE protein and other N‐related soil health indicators is poorly understood. In this study, ACE protein is investigated in relation to other soil N measures at four timepoints across a single growing season along a 33‐year‐old replicated eight‐system management intensity gradient located in southwest Michigan, USA. On average, polyculture perennial systems that promote soil health had two to four times higher (2–12 g kg−1higher) ACE protein concentrations compared to annual cropping and monoculture perennial systems. In addition, ACE protein fluctuated less than total soil N, NH4+‐N, and NO3‐N across the growing season, which shows the potential for ACE protein to serve as a reliable indicator of soil health and soil organic N status. Furthermore, ACE protein was positively correlated with total soil N and NH4+‐N and negatively correlated with NO3‐N at individual sampling timepoints across the management intensity gradient. In addition, ACE protein, measured toward the end of the growing season, showed a consistent and positive trend with yield across different systems. This study highlights the potential for ACE protein as an indicator of sustainable management practices, SOM cycling, and soil health and calls for more studies investigating its relationship with crop productivity. 
    more » « less
  4. Abstract Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (−0.024 cm3H2O cm−3soil) than the control plot throughout the suspension. We measured decreased SOM content (−0.184 g SOM g−1for O horizon soil, −0.010 g SOM g−1for A horizon soil) and WHC (−0.82 g H2O g−1for O horizon soil, −0.18 g H2O g−1for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change. 
    more » « less