The core of this research is separated into three domains, the ultrahigh strain rate response of elastomeric polymers, laser‐induced shock waves , and terahertz time‐domain spectroscopy (THz‐TDS). Elastomers, e.g., polyurea, constitute an advance class of materials suitable for many applications, specifically in high impact loading scenarios, thus, a laser‐induced shock wave (LSW) experimental technique is used to investigate the mechanical response of shock‐loaded polyurea. LSW can submit samples to a strain rate exceeding 106s−1at low strains, enabling determination of material intrinsic failure modes. The large deformation induced during shock loading may alter the macromolecule structure, which can only be detected spectroscopically. Therefore, this research incorporated terahertz bulk spectroscopy to detect and report molecular conformational changes. Microscopy techniques were also used to elucidate changes in the microscale properties, morphology, and topography. The interpretation of the results explicated brittle failure in terms of partial and total spallation and, remarkably, ductile failure leading to plastic deformation, including plastic bulging and adiabatic shearing, not previously associated with LSW technique. Furthermore, spectral changes found in the terahertz regime substantiated the validity of terahertz spectroscopy in elucidating the underlying mechanism associated with the impact mitigating properties of dynamically loaded polyurea.
Achieving high repeatability and efficiency in laser-induced strong shock wave excitation remains a significant technical challenge, as evidenced by the extensive efforts undertaken at large-scale national laboratories to optimize the compression of light element pellets. In this study, we propose and model a novel optical design for generating strong shocks at a tabletop scale. Our approach leverages the spatial and temporal shaping of multiple laser pulses to form concentric laser rings on condensed matter samples. Each laser ring initiates a two-dimensional focusing shock wave that overlaps and converges with preceding shock waves at a central point within the ring. We present preliminary experimental results for a single ring configuration. To enable high-power laser focusing at the micron scale, we demonstrate experimentally the feasibility of employing dielectric metasurfaces with exceptional damage threshold, experimentally determined to be 1.1 J/cm2, as replacements for conventional optics. These metasurfaces enable the creation of pristine, high-fluence laser rings essential for launching stable shock waves in materials. Herein, we showcase results obtained using a water sample, achieving shock pressures in the gigapascal (GPa) range. Our findings provide a promising pathway towards the application of laser-induced strong shock compression in condensed matter at the microscale.
more » « less- NSF-PAR ID:
- 10458567
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 31
- Issue:
- 19
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 31308
- Size(s):
- Article No. 31308
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The emergence of new technological needs in 5 G/6 G networking and broadband satellite internet access amplifies the demand for innovative wireless communication hardware, including high-performance low-profile transceivers. In this context, antennas based on metasurfaces – artificial surfaces engineered to manipulate electromagnetic waves at will – represent highly promising solutions. In this article, we introduce leaky-wave metasurface antennas operating at micro/millimeter-wave frequencies that are designed using the principles of quasi-bound states in the continuum, exploiting judiciously tailored spatial symmetries that enable fully customized radiation. Specifically, we unveil additional degrees of control over leaky-wave radiation by demonstrating pointwise control of the amplitude, phase and polarization state of the metasurface aperture fields by carefully breaking relevant symmetries with tailored perturbations. We design and experimentally demonstrate metasurface antenna prototypes showcasing a variety of functionalities advancing capabilities in wireless communications, including single-input multi-output and multi-input multi-output near-field focusing, as well as far-field beam shaping.
-
Inertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids. To minimize the high- and low-frequency variations of the captured images, we incorporated principal component analysis (PCA) and image alignment for flat-field correction. After applying these techniques we generated phase and attenuation maps from a 2D hydrodynamic radiation code (xRAGE), which were used to simulate XPCI images that we qualitatively compare with experimental images, providing a one-to-one comparison for benchmarking material performance. Moreover, we implement a transport-of-intensity (TIE) based method to obtain the average projected mass density (areal density) of our experimental images, yielding insight into how defect-bearing ablator materials alter microstructural feature evolution, material compression, and shock wave propagation on ICF-relevant time scales.more » « less
-
null (Ed.)Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface.more » « less
-
Abstract The response of forsterite, Mg2SiO4, under dynamic compression is of fundamental importance for understanding its phase transformations and high‐pressure behavior. Here, we have carried out an in situ X‐ray diffraction study of laser‐shocked polycrystalline and single‐crystal forsterite (
a ‐,b ‐, andc ‐orientations) from 19 to 122 GPa using the Matter in Extreme Conditions end‐station of the Linac Coherent Light Source. Under laser‐based shock loading, forsterite does not transform to the high‐pressure equilibrium assemblage of MgSiO3bridgmanite and MgO periclase, as has been suggested previously. Instead, we observe forsterite and forsterite III, a metastable polymorph of Mg2SiO4, coexisting in a mixed‐phase region from 33 to 75 GPa for both polycrystalline and single‐crystal samples. Densities inferred from X‐ray diffraction data are consistent with earlier gas‐gun shock data. At higher stress, the response is sample‐dependent. Polycrystalline samples undergo amorphization above 79 GPa. For [010]‐ and [001]‐oriented crystals, a mixture of crystalline and amorphous material is observed to 108 GPa, whereas the [100]‐oriented forsterite adopts an unknown phase at 122 GPa. The first two sharp diffraction peaks of amorphous Mg2SiO4show a similar trend with compression as those observed for MgSiO3in both recent static‐ and laser‐driven shock experiments. Upon release to ambient pressure, all samples retain or revert to forsterite with evidence for amorphous material also present in some cases. This study demonstrates the utility of femtosecond free‐electron laser X‐ray sources for probing the temporal evolution of high‐pressure silicate structures through the nanosecond‐scale events of shock compression and release.