skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Exploring the hidden Universe: a novel phenomenological approach for recovering arbitrary gravitational-wave millilensing configurations

Since the first detection of gravitational waves in 2015, gravitational-wave astronomy has emerged as a rapidly advancing field that holds great potential for studying the cosmos, from probing the properties of black holes to testing the limits of our current understanding of gravity. One important aspect of gravitational-wave astronomy is the phenomenon of gravitational lensing, where massive intervening objects can bend and magnify gravitational waves, providing a unique way to probe the distribution of matter in the Universe, as well as finding applications to fundamental physics, astrophysics, and cosmology. However, current models for gravitational-wave millilensing—a specific form of lensing where small-scale astrophysical objects can split a gravitational wave signal into multiple copies—are often limited to simple isolated lenses, which is not realistic for complex lensing scenarios. In this paper, we present a novel phenomenological approach to incorporate millilensing in data analysis in a model-independent fashion. Our approach enables the recovery of arbitrary lens configurations without the need for extensive computational lens modelling, making it a more accurate and computationally efficient tool for studying the distribution of matter in the Universe using gravitational-wave signals. When gravitational-wave lensing observations become possible, our method could provide a powerful tool for studying complex lens configurations in the future.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 4149-4160
["p. 4149-4160"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Supermassive black hole binary systems (SMBHBs) should be the most powerful sources of gravitational waves (GWs) in the universe. Once pulsar timing arrays (PTAs) detect the stochastic GW background from their cosmic merger history, searching for individually resolvable binaries will take on new importance. Since these individual SMBHBs are expected to be rare, here we explore how strong gravitational lensing can act as a tool for increasing their detection prospects by magnifying fainter sources and bringing them into view. Unlike for electromagnetic waves, when the geometric optics limit is nearly always valid, for GWs the wave-diffraction-interference effects can become important when the wavelength of the GWs is larger than the Schwarzchild radius of the lens, i.e.,Mlens108fmHz1M. For the GW frequency range explored in this work, the geometric optics limit holds. We investigate GW signals from SMBHBs that might be detectable with current and future PTAs under the assumption that quasars serve as bright beacons that signal a recent merger. Using the black hole mass function derived from quasars and a physically motivated magnification distribution, we expect to detect a few strongly lensed binary systems out toz≈ 2. Additionally, for a range of fixed magnifications 2 ≤μ≤ 100, strong lensing adds up to ∼30 more detectable binaries for PTAs. Finally, we investigate the possibility of observing both time-delayed electromagnetic signals and GW signals from these strongly lensed binary systems—that will provide us with unprecedented multi-messenger insights into their orbital evolution.

    more » « less
  2. ABSTRACT Gravitational lensing of fast radio bursts (FRBs) offers an exciting avenue for several cosmological applications. However, it is not yet clear how many such events future surveys will detect nor how to optimally find them. We use the known properties of FRBs to forecast detection rates of gravitational lensing on delay time-scales from microseconds to years, corresponding to lens masses spanning 15 orders of magnitude. We highlight the role of the FRB redshift distribution on our ability to observe gravitational lensing. We consider cosmological lensing of FRBs by stars in foreground galaxies and show that strong stellar lensing will dominate on microsecond time-scales. Upcoming surveys such as DSA-2000 and CHORD will constrain the fraction of dark matter in compact objects (e.g. primordial black holes) and may detect millilensing events from intermediate mass black holes (IMBHs) or small dark matter halos. Coherent all-sky monitors will be able to detect longer-duration lensing events from massive galaxies, in addition to short time-scale lensing. Finally, we propose a new application of FRB gravitational lensing that will measure directly the circumgalactic medium of intervening galaxies. 
    more » « less

    Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects leading to distortion in the signals. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some follow-up analyses that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system by applying these analyses to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. These analyses cover the strong lensing, millilensing, and microlensing regimes. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations.

    more » « less
  4. Abstract

    The population properties of intermediate-mass black holes remain largely unknown, and understanding their distribution could provide a missing link in the formation of supermassive black holes and galaxies. Gravitational-wave observations can help fill in the gap from stellar mass black holes to supermassive black holes with masses between ∼100–104M. In our work, we propose a new method for examining lens populations through lensing statistics of gravitational waves, here focusing on inferring the number density of intermediate-mass black holes through hierarchical Bayesian inference. Simulating ∼200 lensed gravitational-wave signals, we find that existing gravitational-wave observatories at their design sensitivity could either constrain the number density of 106Mpc−3within a factor of 10, or place an upper bound of ≲104Mpc−3if the true number density is 103Mpc−3. More broadly, our method leaves room for incorporation of additional lens populations, providing a general framework for probing the population properties of lenses in the universe.

    more » « less
  5. Abstract CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r , in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5 σ , or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL. 
    more » « less