Abstract We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses.
more »
« less
Follow-up analyses to the O3 LIGO–Virgo–KAGRA lensing searches
ABSTRACT Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects leading to distortion in the signals. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some follow-up analyses that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system by applying these analyses to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. These analyses cover the strong lensing, millilensing, and microlensing regimes. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations.
more »
« less
- PAR ID:
- 10469014
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 526
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3832-3860
- Size(s):
- p. 3832-3860
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.more » « less
-
Abstract We present the first results from a new survey for high-redshift (z≳ 5) gravitationally lensed quasars and close quasar pairs. We carry out candidate selection based on the colors and shapes of objects in public imaging surveys, then conduct follow-up observations to confirm the nature of high-priority candidates. In this paper, we report the discoveries of J0025–0145 (z= 5.07), which we identify as an intermediately lensed quasar, and J2329–0522 (z= 4.85), which is a kiloparsec-scale close quasar pair. The Hubble Space Telescope (HST) image of J0025–0145 shows a foreground lensing galaxy located 0.″6 away from the quasar. However, J0025–0145 does not exhibit multiple lensed images of the quasar, and we identify J0025–0145 as an intermediate lensing system (a lensing system that is not multiply imaged but has a significant magnification). The spectrum of J0025–0145 implies an extreme Eddington ratio if the quasar luminosity is intrinsic, which could be explained by a large lensing magnification. The HST image of J0025–0145 also indicates a tentative detection of the quasar host galaxy in the rest-frame UV, illustrating the power of lensing magnification and distortion in studies of high-redshift quasar host galaxies. Object J2329–0522 consists of two resolved components with significantly different spectral properties and a lack of lensing galaxy detection under subarcsecond seeing. We identify it as a close quasar pair, which is the highest confirmed kiloparsec-scale quasar pair to date. We also report four lensed quasars and quasar pairs at 2 <z< 4 and discuss possible improvements to our survey strategy.more » « less
-
Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is a large-volume spectroscopic survey without preselection of sources, searching ∼540 deg2for Lyαemitting galaxies (LAEs) at 1.9 <z< 3.5. Taking advantage of such a wide-volume survey, we perform a pilot study using early HETDEX data to search for lensed Lyαemitters (LAEs). After performing a proof of concept using a previously known lensed LAE covered by HETDEX, we perform a search for previously unknown lensed LAEs in the HETDEX spectroscopic sample. We present a catalog of 26 potential LAEs lensed by foreground, red, non-star-forming galaxies atz∼ 0.4–0.7. We estimate the magnification for each candidate system, finding 12 candidates to be within the strong lensing regime (magnificationμ> 2). Follow-up observations of these potential lensed LAEs have the potential to confirm their lensed nature and explore these distant galaxies in more detail.more » « less
-
Abstract Dual quasars at small physical separations are an important precursor phase of galaxy mergers, ultimately leading to the coalescence of the two supermassive black holes. Starting from a sample of dual and/or lensed quasar candidates discovered using astrometric jitter in Gaia data, we present a pilot case study of one of the most promising yet puzzling candidate dual quasars at cosmic noon (z∼ 1.8). Using multiwavelength imaging and spectroscopy from X-ray to radio, we test whether the SDSS J0823+2418 system is two individual quasars in a bound pair at separation ∼0.″64, or instead a single quasar being gravitationally lensed by a foreground galaxy. We find consistent flux ratios (∼1.25−1.45) between the two sources in optical, near-IR (NIR), UV, and radio, and thus similar spectral energy distributions, suggesting a strong-lensing scenario. However, differences in the radio spectral index, as well as changing X-ray fluxes, hint at either a dual quasar with otherwise nearly identical properties or perhaps lensing-based time lag of ∼3 days paired with intrinsic variability. We find with lens mass modeling that the relative NIR positions and magnitudes of the two quasars and a marginally detected central galaxy are consistent with strong lensing. Archival Sloan Digital Sky Survey spectra likewise suggest a foreground absorber via Mgiiabsorption lines. We conclude that SDSS J0823+2418 is likely a lensed quasar, and therefore that the VODKA sample contains a population of these lensed systems (perhaps as high as 50%) as well as dual quasars.more » « less