Abstract Intermediate-mass black holes (IMBHs) are the missing link between stellar-mass and supermassive black holes, widely believed to reside in at least some dense star clusters, but not yet observed directly. Tidal disruptions of white dwarfs (WDs) are luminous only for black holes less massive than ∼105M⊙, therefore providing a unique smoking gun that could finally prove the existence of IMBHs beyond any reasonable doubt. Here, we investigate the tidal captures of WDs by IMBHs in dense star clusters, and estimate upper limits to the capture rates of ∼1 Myr−1for galactic nuclei and ∼0.01 Myr−1for globular clusters. Following the capture, the WD inspirals onto the IMBH, producing gravitational waves detectable out to ∼100 Mpc by LISA for ∼104M⊙IMBHs. The subsequent tidal stripping/disruption of the WD can also release bright X-ray and gamma-ray emission with luminosities of at least ≳1040erg s−1, detectable by Chandra, Swift, and upcoming telescopes, such as the Einstein Probe.
more »
« less
Inferring the Intermediate-mass Black Hole Number Density from Gravitational-wave Lensing Statistics
Abstract The population properties of intermediate-mass black holes remain largely unknown, and understanding their distribution could provide a missing link in the formation of supermassive black holes and galaxies. Gravitational-wave observations can help fill in the gap from stellar mass black holes to supermassive black holes with masses between ∼100–104M⊙. In our work, we propose a new method for examining lens populations through lensing statistics of gravitational waves, here focusing on inferring the number density of intermediate-mass black holes through hierarchical Bayesian inference. Simulating ∼200 lensed gravitational-wave signals, we find that existing gravitational-wave observatories at their design sensitivity could either constrain the number density of 106Mpc−3within a factor of 10, or place an upper bound of ≲104Mpc−3if the true number density is 103Mpc−3. More broadly, our method leaves room for incorporation of additional lens populations, providing a general framework for probing the population properties of lenses in the universe.
more »
« less
- Award ID(s):
- 1836814
- PAR ID:
- 10484897
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 932
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L4
- Size(s):
- Article No. L4
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains the compact binary populations that were used in the Cosmic Explorer MPSAC White paper1 (submitted to the NSF MPSAC ngGW Subcommittee) and the accompanying technical paper2. Contents: 1. 1-year populations for binary black hole (BBH), binary neutron star (BNS), neutron star-black hole (NSBH), intermediate mass binary black hole (IMBBH), Population III (Pop 3) binary black holes and primordial black hole (PBH) mergers. It also contains the SNRs and measurement errors on intrinsic and extrinsic parameters calculated using gwbench3. 2. 1/4-year sub-population of BNS mergers for which errors on tidal parameters were calculated. 3. An ipython notebook (instructions.ipynb) that shows how the data can be used. References: 1. Evans, Matthew et al. Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee (2023). arXiv: 2306.13745 [gr-qc]. 2. Gupta, Ish et al. Characterizing Gravitational Wave Detector Networks: From A# to Cosmic Explorer (2023). In preparation. 3. Borhanian, Ssohrab. GWBENCH: a novel Fisher information package for gravitational-wave benchmarking. Class. Quant. Grav. 38, 175014 (2021). arXiv: 2010.15202 [gr-qc].more » « less
-
Abstract Recent advances in numerical simulations of magnetically arrested accretion onto supermassive black holes have shed light on the formation and dynamics of magnetospheric current sheets near the black hole horizon. By considering the pair magnetizationσein the upstream region and the mass accretion rateṁ(in units of the Eddington mass accretion rate) as free parameters we estimate the strength of the magnetic field and develop analytical models, motivated by recent three-dimensional particle-in-cell simulations, to describe the populations of relativistic electrons and positrons (pairs) in the reconnection region.Applying our model to M87*, we numerically compute the non-thermal photon spectra for various values ofσe. We show that pairs that are accelerated up to the synchrotron radiation-limited energy while meandering across both sides of the current sheet, can produce MeV flares with luminosity of ∼ 1041 erg s-1— independent ofσe— for a black hole accreting atṁ=10-5. Pairs that are trapped in the transient current sheet can produce X-ray counterparts to the MeV flares, lasting about a day for current sheets with length of a few gravitational radii. We also show that the upstream plasma can be enriched due to photon-photon pair creation, and derive a new equilibrium magnetization ofσe∼ 103-104forṁ= 10-6- 10-5. Additionally, we explore the potential of magnetospheric current sheets to accelerate protons to ultra-high energies, finding that while acceleration to such energies is limited by various loss mechanisms, such as synchrotron and photopion losses from the non-thermal emission from pairs, maximal proton energies in the range of a few EeV are attainable in magnetospheric sheets forming around supermassive sub-Eddington accreting black holes.more » « less
-
Abstract The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes fromz≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M⊙. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.more » « less
-
ABSTRACT Galactic nuclei are potential hosts for intermediate-mass black holes (IMBHs), whose gravitational field can affect the motion of stars and compact objects. The absence of observable perturbations in our own Galactic Centre has resulted in a few constraints on the mass and orbit of a putative IMBH. Here, we show that the Laser Interferometer Space Antenna (LISA) can further constrain these parameters if the IMBH forms a binary with a compact remnant (a white dwarf, a neutron star, or a stellar-mass black hole), as the gravitational-wave signal from the binary will exhibit Doppler-shift variations as it orbits around Sgr A*. We argue that this method is the most effective for IMBHs with masses $$10^3\, \mathrm{ M}_\odot \lesssim M_{\rm IMBH}\lesssim 10^5\, \mathrm{ M}_\odot$$ and distances of 0.1–2 mpc with respect to the supermassive black hole, a region of the parameter space partially unconstrained by other methods. We show that in this region the Doppler shift is most likely measurable whenever the binary is detected in the LISA band, and it can help constrain the mass and orbit of a putative IMBH in the centre of our Galaxy. We also discuss possible ways for an IMBH to form a binary in the Galactic Centre, showing that gravitational-wave captures of stellar-mass black holes and neutron stars are the most efficient channel.more » « less
An official website of the United States government
