skip to main content


Title: Determining consumer's carbon emission obligation through virtual emission tracing in power systems
Abstract

Although a recent report by the U.S. Energy Information Administration indicates that CO2emissions from power generation have now fallen below emissions from the transportation sector, electricity use remains a significant part of human's environmental footprint since fossil fuels are the major energy resource for electricity generation worldwide. This explains the continual effort by policy makers to develop a remedy to mitigate carbon emissions. It is then critically important to properly account for the emissions associated with electricity generation, delivery, and consumption. In particular, it is critical to be able to allocate emissions to the relevant electricity consumers creating the demand that results in a polluting emission. Therefore, in this paper avirtual carbon emission tracing method in power systemsis thoroughly presented to facilitate allotting carbon obligation. The method is developed based on the proportional sharing principle that has been used in power system operation. The proposed methodology is implemented on the IEEE 5‐bus and 9‐bus systems, two widely used and recognized power grid benchmarks.

 
more » « less
NSF-PAR ID:
10458748
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Environmental Progress & Sustainable Energy
Volume:
39
Issue:
1
ISSN:
1944-7442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Combusting fossil fuels to produce electricity is the single largest contributor to sector-level, anthropogenic carbon pollution. Because sector-wide policies are often too unwieldy to implement, however, some researchers have recommended reducing electricity-based CO2emissions by targeting the most extreme emitters of each nation’s electricity industry. Here, we use a unique international data source to measure national disproportionalities in power plant CO2emissions and estimate the fraction of each country’s electricity-based CO2emissions that would be reduced if its most profligate polluters lowered their emission intensities, switched to gas fuels, and incorporated carbon capture and storage systems. We find that countries’ disproportionalities vary greatly and have mostly grown over time. We also find that 17%–49% of the world’s CO2emissions from electricity generation could be eliminated depending on the intensity standards, fuels, or carbon capture technologies adopted by hyper-emitting plants. This suggests that policies aimed at improving the environmental performance of ‘super polluters’ are effective strategies for transitioning to decarbonized energy systems.

     
    more » « less
  2. null (Ed.)
    Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DC power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated. 
    more » « less
  3. Abstract

    Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.

     
    more » « less
  4. Abstract

    Electricity consumption and greenhouse gas (GHG) emissions associated with wastewater flows from residential and commercial water use in three major cities of the United States are analyzed and compared for the period 2010–2018. Contributions of unit wastewater treatment processes and electricity sources to the overall emissions are considered. Tucson (Arizona), Denver (Colorado), and Washington, DC were chosen for their distinct locations, climatic conditions, raw water sources, wastewater treatment technologies, and electric power mixes. Denver experienced a 20% reduction in treated wastewater volumes per person despite a 16% increase in population. In Washington, DC, the reduction was 19%, corresponding to a 16% increase in population, and in Tucson 14% despite a population growth of 3%. The electricity intensity per volume of treated wastewater was higher in Tucson (1 kWh m−3) than in Washington, DC (0.7 kWh m−3) or Denver (0.5 kWh m−3). Tucson’s GHG emissions per person were about six times higher compared to Denver and four times higher compared to Washington, DC. Wastewater treatment facilities in Denver and Washington, DC generated a quarter to third of their electricity needs from onsite biogas and lowered their GHG emissions by offsetting purchases from the grid, including coal-generated electricity. The higher GHG emission intensity in Tucson is a reflection of coal majority in the electricity mix in the period, gradually replaced with natural gas, solar, and biogas. In 2018, the GHG reduction was 20% when the share of solar electricity increased to 14% from zero in 2016. In the analysis period, reduced wastewater volumes relative to the 2010 baseline saved Denver 44 000 MWh, Washington, DC 11 000 MWh and Tucson 7000 MWh of electricity. As a result, Washington, DC managed to forgo 21 000 metric tons of CO2-eqand Denver 34 000 metric tons, while Tucson’s cumulative emissions increased by 22 000 metric tons of CO2-eq. This study highlights the variability observed in water systems and the opportunities that exist with water savings to allow for wastewater generation reduction, recovering energy from onsite biogas, and using energy-efficient wastewater treatment technologies.

     
    more » « less
  5. Abstract

    India’s coal-heavy electricity system is the world’s third largest and a major emitter of air pollution and greenhouse gas emissions. Consequently, it remains a focus of decarbonization and air pollution control policy. Considerable heterogeneity exists between states in India in terms of electricity demand, generation fuel mix, and emissions. However, no analysis has disentangled the expected, state-level spatial differences and interactions in air pollution mortality under current and future power sector policies in India. We use a reduced-complexity air quality model to evaluate annual PM2.5mortalities associated with electricity production and consumption in each state in India. Furthermore, we test emissions control, carbon tax, and market integration policies to understand how changes in power sector operations affect ambient PM2.5concentrations and associated mortality. We find poorer, coal-dependent states in eastern India disproportionately face the burden of PM2.5mortality from electricity in India by importing deaths. Wealthier, high renewable energy states in western and southern India meanwhile face a lower burden by exporting deaths. This suggests that as these states have adopted more renewable generation, they have shifted their coal generation and associated PM2.5mortality to eastern areas. We also find widespread sulfur emissions control decreases mortality by about 50%. Likewise, increasing carbon taxes in the short term reduces annual mortality by up to 9%. Market reform where generators between states pool to meet demand reduces annual mortality by up to 8%. As India looks to increase renewable energy, implement emissions control regulations, establish a carbon trading market, and move towards further power market integration, our results provide greater spatial detail for a federally structured Indian electricity system.

     
    more » « less