skip to main content


Title: Looking back to look ahead: a vision for soil denitrification research
Abstract

Denitrification plays a critical role in regulating ecosystem nutrient availability and anthropogenic reactive nitrogen (N) production. Its importance has inspired an increasing number of studies, yet it remains the most poorly constrained term in terrestrial ecosystem N budgets. We censused the peer‐reviewed soil denitrification literature (1975–2015) to identify opportunities for future studies to advance our understanding despite the inherent challenges in studying the process. We found that only one‐third of studies reported estimates of both nitrous oxide (N2O) and dinitrogen (N2) production fluxes, often the dominant end products of denitrification, while the majority of studies reported only net N2O fluxes or denitrification potential. Of the 236 studies that measured complete denitrification to N2, 49% used the acetylene inhibition method, 84% were conducted in the laboratory, 81% were performed on surface soils (0–20 cm depth), 75% were located in North America and Europe, and 78% performed treatment manipulations, mostly of N, carbon, or water. To improve understanding of soil denitrification, we recommend broadening access to technologies for new methodologies to measure soil N2production rates, conducting more studies in the tropics and on subsoils, performing standardized experiments on unmanipulated soils, and using more precise terminology to refer to measured process rates (e.g., net N2O flux or denitrification potential). To overcome the greater challenges in studying soil denitrification, we envision coordinated research efforts based on standard reporting of metadata for all soil denitrification studies, standard protocols for studies contributing to a Global Denitrification Research Network, and a global consortium of denitrification researchers to facilitate sharing ideas, resources, and to provide mentorship for researchers new to the field.

 
more » « less
Award ID(s):
1656027
NSF-PAR ID:
10458839
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
1
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wildfires may increase soil emissions of trace nitrogen (N) gases like nitric oxide (NO) and nitrous oxide (N2O) by changing soil physicochemical conditions and altering microbial processes like nitrification and denitrification. When 34 studies were synthesized, we found a significant increase in both NO and N2O emissions up to 1 year post-fire across studies spanning ecosystems globally. However, when fluxes were separated by ecosystem type, we found that individual ecosystem types responded uniquely to fire. Forest soils tended to emit more N2O after fire, but there was no significant effect on NO. Shrubland soils showed significant increases in both NO and N2O emissions after fires; often with extremely large but short-lived NO pulses occurring immediately after fire. Grassland NO emissions increased after fire, but the size of this effect was small relative to shrublands. N2O emissions from burned grasslands were highly variable with no significant effect. To better understand the variation in responses to fire across global ecosystems, more consistent measurements of variables recognized as important controls on soil fluxes of NO and N2O (e.g., N cycling rates, soil water content, pH, and substrate availability) are needed across studies. We also suggest that fire-specific elements like burn severity, microbial community succession, and the presence of char be considered by future studies. Our synthesis suggests that fires can exacerbate ecosystem N loss long after they burn, increasing soil emissions of NO and N2O with implications for ecosystem N loss, climate, and regional air quality as wildfires increase globally.

     
    more » « less
  2. Abstract

    The ocean is estimated to contribute up to ~20% of global fluxes of atmospheric nitrous oxide (N2O), an important greenhouse gas and ozone depletion agent. Marine oxygen minimum zones contribute disproportionately to this flux. To further understand the partition of nitrification and denitrification and their environmental controls on marine N2O fluxes, we report new relationships between oxygen concentration and rates of N2O production from nitrification and denitrification directly measured with15N tracers in the Eastern Tropical Pacific. Highest N2O production rates occurred near the oxic‐anoxic interface, where there is strong potential for N2O efflux to the atmosphere. The dominant N2O source in oxygen minimum zones was nitrate reduction, the rates of which were 1 to 2 orders of magnitude higher than those of ammonium oxidation. The presence of oxygen significantly inhibited the production of N2O from both nitrification and denitrification. These experimental data provide new constraints to a multicomponent global ocean biogeochemical model, which yielded annual oceanic N2O efflux of 1.7–4.4 Tg‐N (median 2.8 Tg‐N, 1 Tg = 1012 g), with denitrification contributing 20% to the oceanic flux. Thus, denitrification should be viewed as a net N2O production pathway in the marine environment.

     
    more » « less
  3. Nitrous oxide (N2O) is a potent greenhouse gas that contributes to stratospheric ozone depletion and global climate change. Soil denitrification has two potential end-products, N2O and dinitrogen (N2), and the ratio of these end-products (N2O:(N2O+N2) or the N2O ratio) is controlled by various factors. This study aims to quantify the influence of soil pH on the ratio of denitrification end-products in Oklahoma soils with different soil textures. Six natural grassland soils encompassing three distinct soil textures were incubated in the laboratory under natural and modified pH with an overall tested pH ranging from 2 to 10. Denitrification end-products were measured in the laboratory using the acetylene inhibition technique and further estimated using a process-based biogeochemical model. Both the laboratory and model results showed that soil pH and texture influenced the ratio of the denitrification end-products. Generally, as soil pH increased the N2O ratio decreased, although both lab and model results indicated that this relationship was not linear. Soil texture may have an indirect effect on the N2O ratio, as two soils of the same texture could have different N2O ratios. However, clay percentage of the soil did show a linear positive correlation with the N2O ratio, suggesting components of soil texture may be more influential than others. Overall, soil pH was a controlling factor in the ratio of denitrification end-products and the newly observed nonlinear relationship warrants further study, particularly when considering its effects in different soil textures.

     
    more » « less
  4. Abstract

    Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N2O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types,Sporobolus alterniflorus(= Spartina alterniflora) andSporobolus pumilus(= Spartina patens), using 24-h laboratory incubation experiments. Potential N2O fluxes increased from minor sinks to major sources following elevated treatments across all four marsh sites. One day of potential N2O emissions under elevated treatments (representing either long-term sea surface warming or short-term ocean heatwaves effects on coastal marsh soil temperatures alongside pulses of N loading) offset 15–60% of the potential annual ambient N2O sink, depending on marsh site and vegetation type. Rates of potential denitrification were generally higher in high latitude than in low latitude marsh soils under ambient treatments, with low ratios of N2O:N2indicating complete denitrification in high latitude marsh soils. Under elevated temperature and Nr treatments, potential denitrification was lower in high latitude soil but higher in low latitude soil as compared to ambient conditions, with incomplete denitrification observed except in LouisianaS. pumilus. Overall, our findings suggest that a combined increase in temperature and Nr has the potential to reduce salt marsh greenhouse gas (GHG) sinks under future global change scenarios.

     
    more » « less
  5. Abstract

    Soil nitrous oxide (N2O) emissions are highly variable in space and time, making it difficult to estimate ecosystem level fluxes of this potent greenhouse gas. While topographic depressions are often evoked as permanent N2O hot spots and rain events are well‐known triggers of N2O hot moments, soil N2O emissions are still poorly predicted. Thus, the objective of this study was to determine how to best use topography and rain events as variables to predict soil N2O emissions at the field scale. We measured soil N2O emissions 11 times over the course of one growing season from 65 locations within an agricultural field exhibiting microtopography. We found that the topographic indices best predicting soil N2O emissions varied by date, with soil properties as consistently poor predictors. Large rain events (>30 mm) led to an N2O hot moment only in the early summer and not in the cool spring or later in the summer when crops were at peak growth and likely had high evapotranspiration rates. In a laboratory experiment, we demonstrated that low heterotrophic respiration rates at cold temperatures slowly depleted soil dissolved O2, thus suppressing denitrification over the 2–3 day timescale typical of field ponding. Our findings show that topographic depressions do not consistently act as N2O hot spots and that rainfall does not consistently trigger N2O hot moments. We assert that the spatiotemporal variation in soil N2O emissions is not always characterized by predictable hot spots or hot moments and that controls on this variation change depending on environmental conditions.

     
    more » « less