Thin layer sediment placement (TLP) is used to build elevation in marshes, counteracting effects of subsidence and sea level rise. However, TLP success may vary due to plant stress associated with reductions in nutrient availability and hydrologic flushing or through the creation of acid sulfate soils. This study examined the influence of sediment grain size and soil amendments on plant growth, soil and porewater characteristics, and greenhouse gas exchange for three key U.S. salt marsh plants:
This content will become publicly available on January 1, 2025
Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N2O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types,
- Award ID(s):
- 1935555
- NSF-PAR ID:
- 10488862
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 167
- Issue:
- 1
- ISSN:
- 1573-515X
- Page Range / eLocation ID:
- 21 to 37
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Spartina alterniflora (synonymSporobolus alterniflorus ),Spartina patens (synonymSporobolus pumilus ), andSalicornia pacifica. We found that bioavailable nitrogen concentrations (measured as extractable NH4+‐N) and porewater pH and salinity were inversely related to grain size, while soil redox was more reducing in finer sediments. This suggests that utilizing finer sediments in TLP projects will result in a more reduced environment with higher nutrient availability, while larger grain sized sediments will be better flushed and oxygenated. We further found that grain size had a significant effect on vegetation biomass allocation and rates of gas exchange, although these effects were species‐specific. We found that soil amendments (biochar and compost) did not subsidize plant growth but were associated with increases in soil respiration and methane emissions. Biochar amendments were additionally ineffective in ameliorating acid sulfate conditions. This study uncovers complex interactions between sediment type and vegetation, emphasizing the limitations of soil amendments. The findings aid restoration project managers in making informed decisions regarding sediment type, target vegetation, and soil amendments for successful TLP projects. -
Thin layer sediment placement (TLP) is used to build elevation in marshes, counteracting effects of subsidence and sea level rise. However, TLP success may vary due to plant stress associated with reductions in nutrient availability and hydrologic flushing or through the creation of acid sulfate soils. This study examined the influence of sediment grain size and soil amendments on plant growth, soil and porewater characteristics, and greenhouse gas exchange for three key US salt marsh plants: Spartina alterniflora (synonym Sporobolus alterniflorus), Spartina patens (synonym Sporobolus pumilus), and Salicornia pacifica. We found that bioavailable nitrogen concentrations (measured as extractable NH4+-N) and porewater pH and salinity were inversely related to grain size, while soil redox was more reducing in finer sediments. This suggests that utilizing finer sediments in TLP projects will result in a more reduced environment with higher nutrient availability, while larger grain sized sediments will be better flushed and oxygenated. We further found that grain size had a significant effect on vegetation biomass allocation and rates of gas exchange, although these effects were species-specific. We found that soil amendments (biochar and compost) did not subsidize plant growth but were associated with increases in soil respiration and methane emissions. Biochar amendments were additionally ineffective in ameliorating acid sulfate conditions. This study uncovers complex interactions between sediment type and vegetation, emphasizing limitations of soil amendments. The findings aid restoration project managers in making informed decisions regarding sediment type, target vegetation, and soil amendments for successful TLP projects.more » « less
-
Nitrous oxide (N2O) is a potent greenhouse gas that contributes to stratospheric ozone depletion and global climate change. Soil denitrification has two potential end-products, N2O and dinitrogen (N2), and the ratio of these end-products (N2O:(N2O+N2) or the N2O ratio) is controlled by various factors. This study aims to quantify the influence of soil pH on the ratio of denitrification end-products in Oklahoma soils with different soil textures. Six natural grassland soils encompassing three distinct soil textures were incubated in the laboratory under natural and modified pH with an overall tested pH ranging from 2 to 10. Denitrification end-products were measured in the laboratory using the acetylene inhibition technique and further estimated using a process-based biogeochemical model. Both the laboratory and model results showed that soil pH and texture influenced the ratio of the denitrification end-products. Generally, as soil pH increased the N2O ratio decreased, although both lab and model results indicated that this relationship was not linear. Soil texture may have an indirect effect on the N2O ratio, as two soils of the same texture could have different N2O ratios. However, clay percentage of the soil did show a linear positive correlation with the N2O ratio, suggesting components of soil texture may be more influential than others. Overall, soil pH was a controlling factor in the ratio of denitrification end-products and the newly observed nonlinear relationship warrants further study, particularly when considering its effects in different soil textures.
-
Abstract Denitrification plays a critical role in regulating ecosystem nutrient availability and anthropogenic reactive nitrogen (N) production. Its importance has inspired an increasing number of studies, yet it remains the most poorly constrained term in terrestrial ecosystem N budgets. We censused the peer‐reviewed soil denitrification literature (1975–2015) to identify opportunities for future studies to advance our understanding despite the inherent challenges in studying the process. We found that only one‐third of studies reported estimates of both nitrous oxide (N2O) and dinitrogen (N2) production fluxes, often the dominant end products of denitrification, while the majority of studies reported only net N2O fluxes or denitrification potential. Of the 236 studies that measured complete denitrification to N2, 49% used the acetylene inhibition method, 84% were conducted in the laboratory, 81% were performed on surface soils (0–20 cm depth), 75% were located in North America and Europe, and 78% performed treatment manipulations, mostly of N, carbon, or water. To improve understanding of soil denitrification, we recommend broadening access to technologies for new methodologies to measure soil N2production rates, conducting more studies in the tropics and on subsoils, performing standardized experiments on unmanipulated soils, and using more precise terminology to refer to measured process rates (e.g., net N2O flux or denitrification potential). To overcome the greater challenges in studying soil denitrification, we envision coordinated research efforts based on standard reporting of metadata for all soil denitrification studies, standard protocols for studies contributing to a Global Denitrification Research Network, and a global consortium of denitrification researchers to facilitate sharing ideas, resources, and to provide mentorship for researchers new to the field.
-
Abstract The creation and/or restoration of wetlands is an important strategy for controlling the release of reactive nitrogen (N) via denitrification, but there can be tradeoffs between enhanced denitrification and the production of nitrous oxide (N2O), a potent greenhouse gas. A knowledge gap in current understanding of belowground wetland N dynamics is the role of gas transfer through the root aerenchyma system of wetland plants as a shortcut emission pathway for N2O in denitrifying wetland soils. This investigation evaluates the significance of mass transfer into gas‐filled root aerenchyma for the N2O budget in wetland mesocosms planted with
Sagittaria latifolia Willd. andSchoenoplectus acutus (Muhl. ex Bigelow) Á. Löve & D. Löve. Dissolved gas tracer push–pull tests with N2O and the nonreactive gas tracers helium, sulfur hexafluoride, and ethane were used to estimate first‐order rate constants for gas transfer into roots and microbial N2O reduction and thereby disentangle the effects of root‐mediated gas transport from microbial metabolism on N2O balances in saturated soils. Root‐mediated gas transport was estimated to account for up to 37% of overall N2O removal from the wetland soils. Rates of microbial N2O reduction varied widely based on the organic matter content of the soil media and served as a key control on the fraction of N2O that transferred into roots. This research identifies transport through root aerenchyma as a potential shortcut pathway for N2O emission from wetland soils and sediments and indicates that this process should be considered in both measurements and mechanistic modeling of belowground wetland N dynamics.