skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Volatile Organic Compound Profiling from Postmortem Microbes using Gas Chromatography–Mass Spectrometry
Abstract Volatile organic compounds (VOCs) are by‐products of cadaveric decomposition and are responsible for the odor associated with decomposing remains. The direct link betweenVOCproduction and individual postmortem microbes has not been well characterized experimentally. The purpose of this study was to profileVOCs released from three postmortem bacterial isolates (Bacillus subtilis, Ignatzschineria indica, I. ureiclastica)using solid‐phase microextraction arrow (SPMEArrow) and gas chromatography–mass spectrometry (GC‐MS). Species were inoculated in headspace vials on Standard Nutrient Agar and monitored over 5 days at 24°C. Each species exhibited a differentVOCprofile that included common decompositionVOCs.VOCs exhibited upward or downward temporal trends over time.Ignatzschineria indicaproduced a large amount of dimethyldisulfide. Other compounds of interest included alcohols, aldehydes, aromatics, and ketones. This provides foundational data to link decomposition odor with specific postmortem microbes to improve understanding of underlying mechanisms for decompositionVOCproduction.  more » « less
Award ID(s):
1752607 2346598
PAR ID:
10458882
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Forensic Sciences
Volume:
65
Issue:
1
ISSN:
0022-1198
Page Range / eLocation ID:
p. 134-143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Decomposition odor is produced during postmortem mammalian tissue breakdown by bacteria, insects, and intrinsic chemical processes. Past research has not thoroughly investigated which volatile organic compounds (VOCs) can be linked directly to individual bacterial species on decomposing remains. The purpose of this study was to profile the VOCs produced over time by individual species of bacteria using comprehensive two- dimensional gas chromatography (GC×GC) to expand our foundational knowledge of what each bacterial spe­cies contributes to decomposition odor. Five different species of bacteria (Bacillus subtilis, Ignatzschineria indica, Ignatzschineria ureiclastica, Curtobacterium luteum, and Vagococcus lutrae) were cultured on standard nutrient agar individually and monitored daily using solid phase microextraction arrow (SPME Arrow) and GC×GC in combination with quadrupole mass spectrometry (qMS) and flame ionization detection (FID). The GC×GC-qMS/FID approach was used to generate rich VOC profiles that represented the bacterial species’ metabolic VOC pro­ duction longitudinally. The data obtained from the chromatographic output was used to compare with a prior study using one-dimensional GC-qMS, and also between each of the five species to investigate the extent of overlap between species. No single VOC could be found in all five bacterial species investigated, and there was little overlap in the profile between species. To further visualize these differences, chromatographic peak data was investigated using two different ordination strategies, principal component analysis (PCA) and principal coordinate analysis (PCoA). The two ordination strategies were compared with each other using a Procrustes analysis. This was performed to understand differences in ordination strategies between the separation science community and chemical ecological community. Overall, ordination strategies were found to produce similar results, as evidenced by the correlation of PCA and PCoA in the Procrustes analysis. All analysis strategies yielded distinct VOC profiles for each species. Further study of additional species will support understanding of the holistic view of decomposition odor from a chemical ecology perspective, and further support our understanding of the production of decomposition odor that culminates from such a complex environment. 
    more » « less
  2. Abstract Single‐nucleotide polymorphisms (SNPs) are preferred over microsatellite markers in many evolutionary studies, but have only recently been applied to studies of parentage. Evaluations ofSNPs and microsatellites for assigning parentage have mostly focused on special cases that require a relatively large number of heterozygous loci, such as species with low genetic diversity or with complex social structures. We developed 120SNPmarkers from a transcriptome assembled usingRNA‐sequencing of a songbird with the most common avian mating system—social monogamy. We compared the effectiveness of 97 novelSNPs and six previously described microsatellites for assigning paternity in the black‐throated blue warbler,Setophaga caerulescens. We show that the full panel of 97SNPs (meanHo = 0.19) was as powerful for assigning paternity as the panel of multiallelic microsatellites (meanHo = 0.86). Paternity assignments using the two marker types were in agreement for 92% of the offspring. Filtering individual samples by a 50% call rate andSNPs by a 75% call rate maximized the number of offspring assigned with 95% confidence usingSNPs. We also found that the 40 most heterozygousSNPs (meanHo = 0.37) had similar power to assign paternity as the full panel of 97SNPs. These findings demonstrate that a relatively small number of variableSNPs can be effective for parentage analyses in a socially monogamous species. We suggest that the development ofSNPmarkers is advantageous for studies that require high‐throughput genotyping or that plan to address a range of ecological and evolutionary questions. 
    more » « less
  3. <bold>Summary</bold> Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production. 
    more » « less
  4. Abstract AimsBryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes. Study SiteSpruce–fir forests on Whiteface Mountain, NY,USA. MethodsWe characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression. ResultsCanopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients. ConclusionsThe observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities. 
    more » « less
  5. ABSTRACT Coalescent modelling of hybrid zones can provide novel insights into the historical demography of populations, including divergence times, population sizes, introgression proportions, migration rates and the timing of hybrid zone formation. We used coalescent analysis to determine whether the hybrid zone between phylogeographic lineages of the Plateau Fence Lizard (Sceloporus tristichus) in Arizona formed recently due to human‐induced landscape changes, or if it originated during Pleistocene climatic shifts. Given the presence of mitochondrial DNA from another species in the hybrid zone (Southwestern Fence Lizard,S. cowlesi), we tested for the presence ofS. cowlesinuclear DNA in the hybrid zone as well as reassessed the species boundary betweenS. tristichusandS. cowlesi. No evidence ofS. cowlesinuclear DNA is found in the hybrid zone, and the paraphyly of both species raises concerns about their taxonomic validity. Introgression analysis placed the divergence time between the parental hybrid zone populations at approximately 140 kya and their secondary contact and hybridization at approximately 11 kya at the end of the Pleistocene. Introgression proportions estimated for hybrid populations are correlated with their geographic distance from parental populations. The multispecies coalescent with migration provided significant support for unidirectional migration moving from south to north, which is consistent with spatial cline analyses that suggest a slow but steady northward shift of the centre of the hybrid zone over the last two decades. When analysing hybrid populations sampled along a linear transect, coalescent methods can provide novel insights into hybrid zone dynamics. 
    more » « less