skip to main content


Title: Layer‐Number‐Dependent Electronic and Optoelectronic Properties of 2D WSe 2 ‐Organic Hybrid Heterojunction
Abstract

One of the most attractive features of 2D WSe2is a tunability in its electronic and optoelectronic properties depending on the layer number. To harness such unique characteristics for device applications, high quality and easily processable heterojunctions are required and relevant layer‐number‐dependent properties must be understood. Herein, a study is reported on hybrid heterojunctions between 2D WSe2and organic molecules from one‐step solution chemistry and their layer‐number‐dependent properties. Eosin Y (EY) dye is selected as a p‐dopant and uniformly stacked on mechanically exfoliated WSe2flakes via van der Waals interaction, forming a hybrid heterojunction with a type II alignment. The EY‐WSe2heterojunction shows significantly enhanced currents compared to pristine WSe2with a lower barrier height and a longer effective screening length. The work function of the heterostructure is also lower than that of pristine WSe2. The efficient exciton dissociation and doping effect by EY are confirmed by photocurrent and photoluminescence measurements, where WSe2emission is markedly quenched by EY and exciton contribution decreases with layer number. These findings shed critical insights into layer‐number‐dependent electronic and optoelectronic properties of organic‐WSe2layers and also provide simple yet effective means to construct transition metal dichalcogenide‐based heterostructures, which should be valuable for developing layered 2D devices.

 
more » « less
NSF-PAR ID:
10458884
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
6
Issue:
17
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transition metal dichalcogenide (TMD) heterostructures are promising for a variety of applications in photovoltaics and photosensing. Successfully exploiting these heterostructures will require an understanding of their layer-dependent electronic structures. However, there is no experimental data demonstrating the layer-number dependence of photovoltaic effects (PVEs) in vertical TMD heterojunctions. Here, by combining scanning electrochemical cell microscopy (SECCM) with optical probes, we report the first layer-dependence of photocurrents in WSe 2 /WS 2 vertical heterostructures as well as in pristine WS 2 and WSe 2 layers. For WS 2 , we find that photocurrents increase with increasing layer thickness, whereas for WSe 2 the layer dependence is more complex and depends on both the layer number and applied bias ( V b ). We further find that photocurrents in the WSe 2 /WS 2 heterostructures exhibit anomalous layer and material-type dependent behaviors. Our results advance the understanding of photoresponse in atomically thin WSe 2 /WS 2 heterostructures and pave the way to novel nanoelectronic and optoelectronic devices. 
    more » « less
  2. Abstract

    Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.

     
    more » « less
  3. Mixed-dimensional van der Waals heterojunctions involve interfacing materials with different dimensionalities, such as a 2D transition metal dichalcogenide and a 0D organic semiconductor. These heterojunctions have shown unique interfacial properties not found in either individual component. Here, we use femtosecond transient absorption to reveal photoinduced charge transfer and interlayer exciton formation in a mixed-dimensional type-II heterojunction between monolayer MoS2 and vanadyl phthalocyanine (VOPc). Selective excitation of the MoS2 exciton leads to hole transfer from the MoS2 valence band to VOPc highest occupied molecular orbit in ∼710 fs. On the contrary, selective photoexcitation of the VOPc layer leads to instantaneous electron transfer from its excited state to the conduction band of MoS2 in less than 100 fs. This light-initiated ultrafast separation of electrons and holes across the heterojunction interface leads to the formation of an interlayer exciton. These interlayer excitons formed across the interface lead to longer-lived charge-separated states of up to 2.5 ns, longer than in each individual layer of this heterojunction. Thus, the longer charge-separated state along with ultrafast charge transfer times provide promising results for photovoltaic and optoelectronic device applications.

     
    more » « less
  4. Abstract

    Gate‐/wavelength‐dependent scanning photocurrent measurements of black phosphorous (BP)–MoS2heterojunctions have shown that the Schottky barrier at the MoS2–metal interface plays an important role in the photoresponse dynamics of the heterojunction. When the Fermi level is close to the conduction band of MoS2, photoexcited carriers can tunnel through the narrow depletion region at the MoS2–metal interface, leading to a short response time of 13 µs regardless of the incident laser wavelength. This response speed is comparable or better than that of other few‐layer BP–MoS2heterojunctions. Conversely, when the MoS2channel is in the off‐state, the resulting sizeable Schottky barrier and depletion width make it difficult for photoexcited carriers to overcome the barrier. This significantly delays the carrier transit time and thus the photoresponse speed, leading to a wavelength‐dependent response time since the photoexcited carriers induced by short wavelength photons have a higher probability to overcome the Schottky barrier at the MoS2–metal interface than long wavelength photons. These studies not only shed light on the fundamental understanding of photoresponse dynamics in BP–MoS2heterojunctions, but also open new avenues for engineering the interfaces between 2D materials and metal contacts to reduce the response time of 2D optoelectronics.

     
    more » « less
  5. Abstract

    Organic–inorganic hybrid perovskites have emerged as promising optoelectronic materials for applications in photovoltaic and optoelectronic devices. Particularly, 2D layer‐structured hybrid perovskites are of great interest due to their remarkable optical and electrical properties, which can be easily tuned by selecting suitable organic and inorganic moieties during the material synthesis. Here, the solution‐phase growth of a large square‐shaped single‐crystalline 2D hybrid perovskite, phenethylammonium lead bromide (C6H5C2H4NH3)2PbBr4(PEPB), with thickness as few as 3 unit cell layers is demonstrated. Compared to bulk crystals, the 2D PEPB nanocrystals show a major blueshifted photoluminescence (PL) peak at 409 nm indicating an increase in bandgap of 40 meV. Besides the major peak, two new PL peaks located at 480 and 525 nm are observed from the hybrid perovskite nanocrystals. PEPB nanocrystals with different thicknesses show different colors, which can be used to estimate the thickness of the nanocrystals. Time‐resolved reflectance spectroscopy is used to investigate the exciton dynamics, which exhibits a biexponential decay with an amplitude‐weighted lifetime of 16.7 ps. The high‐quality 2D (C6H5C2H4NH3)2PbBr4nanocrystals are expected to have high PL quantum efficiency and potential applications for light‐emitting devices.

     
    more » « less