skip to main content


Title: Gate‐Tunable Photoresponse Time in Black Phosphorus–MoS 2 Heterojunctions
Abstract

Gate‐/wavelength‐dependent scanning photocurrent measurements of black phosphorous (BP)–MoS2heterojunctions have shown that the Schottky barrier at the MoS2–metal interface plays an important role in the photoresponse dynamics of the heterojunction. When the Fermi level is close to the conduction band of MoS2, photoexcited carriers can tunnel through the narrow depletion region at the MoS2–metal interface, leading to a short response time of 13 µs regardless of the incident laser wavelength. This response speed is comparable or better than that of other few‐layer BP–MoS2heterojunctions. Conversely, when the MoS2channel is in the off‐state, the resulting sizeable Schottky barrier and depletion width make it difficult for photoexcited carriers to overcome the barrier. This significantly delays the carrier transit time and thus the photoresponse speed, leading to a wavelength‐dependent response time since the photoexcited carriers induced by short wavelength photons have a higher probability to overcome the Schottky barrier at the MoS2–metal interface than long wavelength photons. These studies not only shed light on the fundamental understanding of photoresponse dynamics in BP–MoS2heterojunctions, but also open new avenues for engineering the interfaces between 2D materials and metal contacts to reduce the response time of 2D optoelectronics.

 
more » « less
Award ID(s):
1805924 1810088
NSF-PAR ID:
10459292
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
7
Issue:
5
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2.  
    more » « less
  3. Abstract

    Atomically thin transition metal dichalcogenides (TMDs) in their excited states can serve as exceptionally small building blocks for active optical platforms. In this scheme, optical excitation provides a practical approach to control light‐TMD interactions via the photocarrier generation, in an ultrafast manner. Here, it is demonstrated that via a controlled generation of photocarriers the second‐harmonic generation (SHG) from a monolayer MoS2crystal can be substantially modulated up to ≈55% within a timeframe of ≈250 fs, a set of performance characteristics that showcases the promise of low‐dimensional materials for all‐optical nonlinear data processing. The combined experimental and theoretical study suggests that the large SHG modulation stems from the correlation between the second‐order dielectric susceptibility χ(2)and the density of photoexcited carriers in MoS2. Indeed, the depopulation of the conduction band electrons, at the vicinity of the high‐symmetryK/K′points of MoS2, suppresses the contribution of interband electronic transitions in the effective χ(2)of the monolayer crystal, enabling the all‐optical modulation of the SHG signal. The strong dependence of the second‐order optical response on the density of photocarriers reveals the promise of time‐resolved nonlinear characterization as an alternative route to monitoring carrier dynamics in excited states of TMDs.

     
    more » « less
  4. Abstract

    A simple room‐temperature process of depositing MXene on a III‐V structure with embedded 2D electron gas (2DEG) is used, which results in a large area, , photodetector (PD) device that greatly outperforms vacuum deposited Ti/Au metal‐semiconductor‐metal (MSM) PD's. By co‐optimizing properties of 2D MXene contacts and the III‐V material heterojunctions, this device sets new operating records with responsivity up to 1.04 A W1at low optical powers, corresponding to >230% internal quantum efficiency, dark current of 50 , >105.6‐dB dynamic range, and 25–150 ps response time, which improves the previous MXene‐Semiconductor‐MXene responsivity by >2.7 times and is 7 × 103–−106times faster compared to other MXene‐based PDs. This is achieved by enhancing the Schottky barrier height by forming a Van der Waals (vdW) heterojunction between a wide bandgap AlGaAs surface layer and spin coatedTi3C2Tzelectrodes. A layered architecture transports the optically generated electrons to a 2DEG channel at the GaAs/AlGaAs heterointerface, where they are rapidly collected. The landscaped electric field pushes the slow holes to an underlying low temperature‐grown GaAs (LT‐GaAs) region where they recombine. The proposed Schottky‐2DEG Photoconductor‐Schottky model for device operation shows how this device circumvents the canonical limitations of gain‐bandwidth product, and carrier transit time, while replacing the need for vacuum deposition of gold or other precious metals.

     
    more » « less
  5. Abstract

    2D transition metal dichalcogenides (TMDs) have exhibited strong application potentials in new emerging electronics because of their atomic thin structure and excellent flexibility, which is out of field of tradition silicon technology. Similar to 3D p–n junctions, 2D p–n heterojunctions by laterally connecting TMDs with different majority charge carriers (electrons and holes), provide ideal platform for current rectifiers, light‐emitting diodes, diode lasers and photovoltaic devices. Here, growth and electrical studies of atomic thin high‐quality p–n heterojunctions between molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) by one‐step chemical vapor deposition method are reported. These p–n heterojunctions exhibit high built‐in potential (≈0.7 eV), resulting in large current rectification ratio without any gate control for diodes, and fast response time (≈6 ms) for self‐powered photodetectors. The simple one‐step growth and electrical studies of monolayer lateral heterojunctions open up the possibility to use TMD heterojunctions for functional devices.

     
    more » « less