Small scale contact between a soft, liquid-coated layer and a stiff surface is common in many situations, from synovial fluid on articular cartilage to adhesives in humid environments. Moreover, many model studies on soft adhesive contacts are conducted with soft silicone elastomers, which possess uncrosslinked liquid molecules ( i.e. silicone oil) when the modulus is low. We investigate how the thickness of a silicone oil layer on a soft substrate relates to the indentation depth of glass microspheres in contact with crosslinked PDMS, which have a modulus of <10 kPa. The particles indent into the underlying substrate more as a function of decreasing oil layer thickness. This is due to the presence of the liquid layer at the surface that causes capillary forces to pull down on the particle. A simple model that balances the capillary force of the oil layer and the minimal particle–substrate adhesion with the elastic and surface tension forces from the substrate is proposed to predict the particle indentation depth. 
                        more » 
                        « less   
                    
                            
                            Extracting uncrosslinked material from low modulus sylgard 184 and the effect on mechanical properties
                        
                    
    
            ABSTRACT Commercial silicone elastomers are commonly used in soft materials research due to their easily tunable mechanical properties. However, conventional polydimethylsiloxane (PDMS) elastomers with moduli below ∼100 kPa contain uncrosslinked free molecules, which play a significant role in their behavior. To utilize these materials, it is important to quantify what role these free molecules play in the mechanical response before and after their removal. We present a simple and inexpensive extraction method that enables the removal of free molecules from a lightly crosslinked sheet of Sylgard 184, a commercially available PDMS elastomer. The materials can contain a majority of free molecules yet maintain a thin and flat geometry without fractures after extraction. Subsequently, we compare the modulus, maximum stretchability, and hysteresis behavior with mixing ratios ranging from 60:1 to 30:1, before and after extraction. We show that the modulus, maximum stretchability, and dissipation increase upon extraction. Moreover, our approach offers a route to prepare crosslinked silicone elastomers with a modulus as low as ∼20 kPa without free molecules from a commercially available kit. © 2020 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 343–351 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1825258
- PAR ID:
- 10458942
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 58
- Issue:
- 2
- ISSN:
- 2642-4150
- Format(s):
- Medium: X Size: p. 343-351
- Size(s):
- p. 343-351
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT There is growing evidence that minimizing the mechanical mismatch between neural implants and brain tissue mitigates inflammatory, biological responses at the interface under long-term implant conditions. The goal of this study is to develop a brain-like soft, conductive neural interface and use an improvised, penetrating microindentation technique reported by us earlier to quantitatively assess the (a) elastic modulus of the neural interface after implantation, (b) mechanical stresses during penetration of the probe, and (c) periodic stresses at steady-state due to tissue micromotion around the probe. We fabricated poly- dimethylsiloxane (PDMS) matrices with multi-walled carbon nanotubes (MWCNTs) using two distinct but carefully calibrated cross-linking ratios, resulting in hard (elastic modulus∼484 kPa) or soft, brain-like (elastic modulus∼5.7 kPa) matrices, the latter being at least 2 orders of magnitude softer than soft neural interfaces reported so far. Subsequent loading of the hard and soft silicone based matrices with (100% w/w) low-molecular weight PDMS siloxanes resulted in further decrease in the elastic modulus of both matrices. Carbon probes with soft PDMS coating show significantly less maximum axial forces (-587 ± 51.5 µN) imposed on the brain than hard PDMS coated probes (-1,253 ± 252 µN) during and after insertion. Steady-state, physiological micromotion related stresses were also significantly less for soft- PDMS coated probes (55.5 ± 17.4 Pa) compared to hard-PDMS coated probes (141.0 ± 21.7 Pa). The penetrating microindentation technique is valuable to quantitatively assess the mechanical properties of neural interfaces in both acute and chronic conditions.more » « less
- 
            While often focused on our visual system, adding touch to VR/AR environments can help render more immersive, richer user experiences. One important touch percept to render is compliance, or ‘softness.’ Herein, we evaluate the perceptibility of soft, magnetorheological elastomers (MRE) in bare-finger interactions. Such materials can be reprogrammed to distinct states of compliance. We fabricated MRE samples over elastic moduli from 23–173 kPa and measured that small 0.25 T magnetic fields increased modulus by 10–60 kPa. MRE interfaces less and more compliant than finger skin were evaluated in discrimination experiments with and without a magnetic field. The results indicate changes in modulus of 11 kPa are required to reach a 75% threshold of discrimination, although greater differences are required when an MRE’s elasticity is about the same as skin. The perceptual results with these magnetically-induced materials are similar to those with non-actuated, solid silicone-elastomers that mimic naturalistic interactions.more » « less
- 
            Abstract Macrotextured silicone breast implants are associated with several complications, ranging from seromas and hematomas to the formation of a rare type of lymphoma, known as breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). The presence of silicone wear debris has been detected within the peri-implant region and fibrotic capsule and histological analyses reveal inflammatory cells surrounding debris particles. However, it is unclear how these debris particles are generated and released from macrotextured implant surfaces, and whether wear debris generation is related to implant stiffness. In this study, we created an accelerated implant aging model to investigate the formation of silicone wear debris produced from self-mated (“shell-shell”) tribological interactions. We created implant-like silicone elastomers from polydimethylsiloxane (PDMS) using Sylgard 184 base:curing agent (10:1, 12:1, and 16:1) and quantified their mechanical properties (E* = 1141 ± 472, 336 ± 20, and 167 ± 53 kPa, respectively). We created macrotextured PDMS samples using the lost-salt technique and compared their self-mated friction coefficient (< µ > = 4.8 ± 3.2, 4.9 ± 1.8, and 6.0 ± 2.3, respectively) and frictional shear stress (τ = 3.1 ± 1.3, 3.2 ± 1.7, and 2.4 ± 1.4 MPa, respectively) to those of the recalled Allergan Biocell macrotextured implant shell (E* = 299 ± 8 kPa, < µ > = 2.2, andτ = 0.8 ± 0.1). Friction coefficient and frictional shear stress were largely insensitive to variations in elastic modulus for macrotextured PDMS samples and recalled implant shells. The stiffest 10:1 PDMS macrotextured sample and the recalled implant shell both generated similar area fractions of silicone wear debris. However, the recalled implant shell released far more particles (> 10×), mainly within the range of 5 to 20 µm2in area. Bone marrow-derived macrophages (BMDMs) were treated with several concentrations of tribologically generated silicone wear debris. We observed widespread phagocytosis of wear debris particles and increasing secretion of inflammatory cytokines with increasing concentration of wear debris particles. Our investigation highlights the importance of avoiding macrotextured surfaces and mitigating wear debris generation from silicone implants to reduce chronic inflammation.more » « less
- 
            Abstract Mechanical properties and degradation profile are important parameters for the applications of biodegradable polyester such as poly(glycerol sebacate) in biomedical engineering. Here, a strategy is reported to make palmitate functionalized poly(glycerol sebacate) (PPGS) to alter the polymer hydrophobicity, crystallinity, microstructures and thermal properties. The changes of these intrinsic properties impart tunable degradation profiles and mechanical properties to the resultant elastomers depending on the palmitate contents. When the palmitates reach up to 16 mol%, the elastic modulus is tuned from initially 838 ± 55 kPa for the PGS to 333 ± 21 kPa for the PPGS under the same crosslinking conditions. The elastomer undergoes reversible elastic deformations for at least 1000 cycles within 20% strain without failure and shows enhanced elasticity. The polymer degradation is simultaneously inhibited because of the increased hydrophobicity. This strategy is different with other PGS modifications which could form a softer elastomer with less crosslinks but typically lead to a quicker degradation. Because the materials are made from endogenous molecules, they possess good cytocompatibility similar to the PGS control. Although these materials are designed specifically for small arteries, it is expected that they will be useful for other soft tissues too.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
