skip to main content

This content will become publicly available on January 1, 2024

Title: Interpretable Math Word Problem Solution Generation via Step-by-step Planning
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Page Range / eLocation ID:
6858 to 6877
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Students often get stuck when programming independently, and need help to progress. Existing, automated feedback can help students progress, but it is unclear whether it ultimately leads to learning. We present Step Tutor, which helps struggling students during programming by presenting them with relevant, step-by-step examples. The goal of Step Tutor is to help students progress, and engage them in comparison, reflection, and learning. When a student requests help, Step Tutor adaptively selects an example to demonstrate the next meaningful step in the solution. It engages the student in comparing "before" and "after" code snapshots, and their corresponding visual output, and guides them to reflect on the changes. Step Tutor is a novel form of help that combines effective aspects of existing support features, such as hints and Worked Examples, to help students both progress and learn. To understand how students use Step Tutor, we asked nine undergraduate students to complete two programming tasks, with its help, and interviewed them about their experience. We present our qualitative analysis of students' experience, which shows us why and how they seek help from Step Tutor, and Step Tutor's affordances. These initial results suggest that students perceived that Step Tutor accomplished its goals of helping them to progress and learn. 
    more » « less
  2. Abstract The double photoionization of a molecule by one photon ejects two electrons and typically creates an unstable dication. Observing the subsequent fragmentation products in coincidence can reveal a surprisingly detailed picture of the dynamics. Determining the time evolution and quantum mechanical states involved leads to deeper understanding of molecular dynamics. Here in a combined experimental and theoretical study, we unambiguously separate the sequential breakup via D +  + OD + intermediates, from other processes leading to the same D +  + D +  + O final products of double ionization of water by a single photon. Moreover, we experimentally identify, separate, and follow step by step, two pathways involving the b  1 Σ + and a 1 Δ electronic states of the intermediate OD + ion. Our classical trajectory calculations on the relevant potential energy surfaces reproduce well the measured data and, combined with the experiment, enable the determination of the internal energy and angular momentum distribution of the OD + intermediate. 
    more » « less