skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: OSSOS. XXVI. On the Lack of Catastrophic Collisions in the Present Kuiper Belt
Abstract We investigate different conditions, including the orbital and size–frequency distribution (SFD) of the early Kuiper Belt, that can trigger catastrophic planetesimal destruction. The goal of this study is to test if there is evidence for collisional grinding in the Kuiper Belt that has occurred since its formation. This analysis has important implications for whether the present-day SFD of the cold classical trans-Neptunian objects (TNOs) is a result of collisional equilibrium or if it reflects the primordial stage of planetesimal accretion. As an input to our modeling, we use the most up-to-date debiased OSSOS++ ensemble sample of the TNO population and orbital model based on the present-day architecture of the Kuiper Belt. We calculate the specific impact energies between impactor–target pairs from different TNO groups and compare our computed energies to catastrophic disruption results from smoothed particle hydrodynamics simulations. We explore different scenarios by considering different total primordial Kuiper Belt masses and power slopes of the SFD and allowing collisions to take place over different timescales. The collisional evolution of the Kuiper Belt is a strong function of the unknown initial mass in the trans-Neptunian region, where collisional grinding of planetesimals requires a total primordial Kuiper Belt mass of M > 5 M ⊕ , collision speeds as high as 3 km s −1 , and collisions over at least 0.5 Gyr. We conclude that presently, most of the collisions in the trans-Neptunian region are in the cratering rather than disruption regime. Given the low collision rates among the cold classical Kuiper Belt objects, their SFD most likely represents the primordial planetesimal accretion.  more » « less
Award ID(s):
1824869
PAR ID:
10459092
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is a complex inclination structure present in the trans-Neptunian object (TNO) orbital distribution in the main classical-belt region (between orbital semimajor axes of 39 and 48 au). The long-term gravitational effects of the giant planets make TNO orbits precess, but nonresonant objects maintain a nearly constant “free” inclination (Ifree) with respect to a local forced precession pole. Because of the likely cosmogonic importance of the distribution of this quantity, we tabulate free inclinations for all main-belt TNOs, each individually computed using barycentric orbital elements with respect to each object’s local forcing pole. We show that the simplest method, based on the Laplace–Lagrange secular theory, is unable to give correct forcing poles for objects near theν18secular resonance, resulting in poorly conservedIfreevalues in much of the main belt. We thus instead implemented an averaged Hamiltonian to obtain the expected nodal precession for each TNO, yielding significantly more accurate free inclinations for nonresonant objects. For the vast majority (96%) of classical-belt TNOs, theseIfreevalues are conserved to < 1° over 4 Gyr numerical simulations, demonstrating the advantage of using this well-conserved quantity in studies of the TNO population and its primordial inclination profile; our computed distributions only reinforce the idea of a very coplanar surviving “cold” primordial population, overlain by a largeI-width implanted “hot” population. 
    more » « less
  2. Abstract The 5:3 and 7:4 mean motion resonances of Neptune are at 42.3 and 43.7 au, respectively, and overlap with objects in the classical trans-Neptunian belt (Kuiper Belt). We report the complete/partial lightcurves of 13 and 14 trans-Neptunian objects (TNOs) in the 5:3 and 7:4 resonances, respectively. We report a most likely contact binary in the 7:4 resonance, 2013 FR28, with a periodicity of 13.97 ± 0.04 hr and a lightcurve amplitude of 0.94 ± 0.02 mag. With a V-/U-shaped lightcurve, 2013 FR28has one of the largest well-sampled TNO amplitudes observed with ground-based observations, comparable to the well-determined contact binary 2001 QG298. 2013 FR28has a mass ratioq∼ 1 with a densityρ∼ 1 g cm−3. We find several objects with large amplitudes and classify 2004 SC60, 2006 CJ69, and 2013 BN82as likely contact binaries and 2001 QF331, 2003 YW179, and 2015 FP345as likely elongated objects. We observe the 17:9 resonant or classical object 2003 SP317that we classify as a likely contact binary. A lower estimate of 10%–50% and 20%–55% for the fraction of (nearly) equal-sized contact binaries is calculated in the 5:3 and 7:4 resonances, respectively. Surface colors of 2004 SC60, 2013 BN82, 2014 OL394, and 2015 FP345have been obtained. Including these colors with ones from the literature reveals that elongated objects and contact binaries share the same ultrared surface color, except Manwë–Thorondor and 2004 SC60. Not only are the colors of the 7:4 and 5:3 TNOs similar to the cold classicals, but we demonstrate that the rotational properties of the 5:3 and 7:4 resonants are similar to those of the cold classicals, inferring a clear link between these subpopulations. 
    more » « less
  3. Abstract We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudesmVR≈ 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs with absolute magnitudesH∼ 10, as well as a dynamically detached object found at 76 au (semimajor axisa≈ 77 au). We find a disagreement between our population of classical TNOs and the CFEPS-L7 three-component model for the Kuiper Belt. 
    more » « less
  4. Abstract Formation models in which terrestrial bodies grow via the pairwise accretion of planetesimals have been reasonably successful at reproducing the general properties of the Solar System, including small-body populations. However, planetesimal accretion has not yet been fully explored in the context of the wide variety of recently discovered extrasolar planetary systems, in particular those that host short-period terrestrial planets. In this work, we use directN-body simulations to explore and understand the growth of planetary embryos from planetesimals in disks extending down to ≃1 day orbital periods. We show that planetesimal accretion becomes nearly 100% efficient at short orbital periods, leading to embryo masses that are much larger than the classical isolation mass. For rocky bodies, the physical size of the object begins to occupy a significant fraction of its Hill sphere toward the inner edge of the disk. In this regime, most close encounters result in collisions, rather than scattering, and the system does not develop a bimodal population of dynamically hot planetesimals and dynamically cold oligarchs, as is seen in previous studies. The highly efficient accretion seen at short orbital periods implies that systems of tightly packed inner planets should be almost completely devoid of any residual small bodies. We demonstrate the robustness of our results to assumptions about the initial disk model, and we also investigate the effects that our simplified collision model has on the emergence of this non-oligarchic growth mode in a planet-forming disk. 
    more » « less
  5. We provide a nonspecialist overview of the current state of understanding of the structure and origin of our Solar System's transneptunian region (often called the Kuiper Belt), highlighting perspectives on planetesimal formation, planet migration, and the contextual relationship with protoplanetary disks. We review the dynamical features of the transneptunian populations and their associated differences in physical properties. We describe aspects of our knowledge that have advanced in the past two decades and then move on to current issues of research interest (which thus still have unclear resolution). ▪  The current transneptunian population consists of both implanted and primordial objects. ▪  The primordial (aka cold) population is a largely unaltered remnant of the population that formed in situ. ▪  The reason for the primordial cold population's current outer edge is unexplained. ▪  The large semimajor-axis population now dynamically detached from Neptune is critical for understanding the Solar System's history. ▪  Observational constraints on the number and orbits of distant objects remain poor. 
    more » « less