skip to main content


Title: Self-propulsion via slipping: Frictional swimming in multilegged locomotors
Locomotion is typically studied either in continuous media where bodies and legs experience forces generated by the flowing medium or on solid substrates dominated by friction. In the former, centralized whole-body coordination is believed to facilitate appropriate slipping through the medium for propulsion. In the latter, slip is often assumed minimal and thus avoided via decentralized control schemes. We find in laboratory experiments that terrestrial locomotion of a meter-scale multisegmented/legged robophysical model resembles undulatory fluid swimming. Experiments varying waves of leg stepping and body bending reveal how these parameters result in effective terrestrial locomotion despite seemingly ineffective isotropic frictional contacts. Dissipation dominates over inertial effects in this macroscopic-scaled regime, resulting in essentially geometric locomotion on land akin to microscopic-scale swimming in fluids. Theoretical analysis demonstrates that the high-dimensional multisegmented/legged dynamics can be simplified to a centralized low-dimensional model, which reveals an effective resistive force theory with an acquired viscous drag anisotropy. We extend our low-dimensional, geometric analysis to illustrate how body undulation can aid performance in non–flat obstacle-rich terrains and also use the scheme to quantitatively model how body undulation affects performance of biological centipede locomotion (the desert centipede Scolopendra polymorpha ) moving at relatively high speeds (∼0.5 body lengths/sec). Our results could facilitate control of multilegged robots in complex terradynamic scenarios.  more » « less
Award ID(s):
1806833
NSF-PAR ID:
10459142
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
11
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Legged movement is ubiquitous in nature and of increasing interest for robotics. Most legged animals routinely encounter foot slipping, yet detailed modeling of multiple contacts with slipping exceeds current simulation capacity. Here we present a principle that unifies multilegged walking (including that involving slipping) with slithering and Stokesian (low Reynolds number) swimming. We generated data-driven principally kinematic models of locomotion for walking in low-slip animals (Argentine ant, 4.7% slip ratio of slipping to total motion) and for high-slip robotic systems (BigANT hexapod, slip ratio 12 to 22%; Multipod robots ranging from 6 to 12 legs, slip ratio 40 to 100%). We found that principally kinematic models could explain much of the variability in body velocity and turning rate using body shape and could predict walking behaviors outside the training data. Most remarkably, walking was principally kinematic irrespective of leg number, foot slipping, and turning rate. We find that grounded walking, with or without slipping, is governed by principally kinematic equations of motion, functionally similar to frictional swimming and slithering. Geometric mechanics thus leads to a unified model for swimming, slithering, and walking. Such commonality may shed light on the evolutionary origins of animal locomotion control and offer new approaches for robotic locomotion and motion planning. 
    more » « less
  2. : Inspired by the locomotor nervous system of vertebrates, central pattern generator (CPG) models can be used to design gaits for articulated robots, such as crawling, swimming or legged robots. Incorporating sensory feedback for gait adaptation in these models can improve the locomotive performance of such robots in challenging terrain. However, many CPG models to date have been developed exclusively for open-loop gait generation for traversing level terrain. In this paper, we present a novel approach for incorporating inertial feedback into the CPG framework for the control of body posture during legged locomotion on steep, unstructured terrain. That is, we adapt the limit cycle of each leg of the robot with time to simultaneously produce locomotion and body posture control. We experimentally validate our approach on a hexapod robot, locomoting in a variety of steep, challenging terrains (grass, rocky slide, stairs). We show how our approach can be used to level the robot's body, allowing it to locomote at a relatively constant speed, even as terrain steepness and complexity prevents the use of an open-loop control strategy. 
    more » « less
  3. null (Ed.)
    Fiber-based flexible piezoelectric composites with interdigitated electrodes, namely Macro-Fiber Composite (MFC) structures, strike a balance between the deformation and actuation force capabilities for effective underwater bio-inspired locomotion. These materials are also suitable for vibration-based energy harvesting toward enabling self-powered electronic components. In this work, we design, fabricate, and experimentally characterize an MFC-based bio-inspired swimmer-energy harvester platform. Following in vacuo and in air frequency response experiments, the proposed piezoelectric robotic fish platform is tested and characterized under water for its swimming performance both in free locomotion (in a large water tank) and also in a closed-loop water channel under imposed flow. In addition to swimming speed characterization under resonant actuation, hydrodynamic thrust resultant in both quiescent water and under imposed flow are quantified experimentally. We show that the proposed design easily produces thrust levels on the order of biological fish with similar dimensions. Overall it produces thrust levels higher than other smart material-based designs (such as soft material-based concepts), while offering geometric scalability and silent operation unlike large scale robotic fish platforms that use conventional and bulky actuators. The performance of this untethered swimmer platform in piezoelectric energy harvesting is also quantified by underwater base excitation experiments in a quiescent water and via vortex induced-vibration (VIV) experiments under imposed flow in a water channel. Following basic resistor sweep experiments in underwater base excitation experiments, VIV tests are conducted for cylindrical bluff body configurations of different diameters and distances from the leading edge of the energy harvesting tail portion. The resulting concept and design can find use for underwater swimmer and sensor applications such as ecological monitoring, among others. 
    more » « less
  4. null (Ed.)
    Synopsis Computational models of aquatic locomotion range from modest individual simple swimmers in 2D to sophisticated 3D multi-swimmer models that attempt to parse collective behavioral dynamics. Each of these models contain a multitude of model input parameters to which its outputs are inherently dependent, that is, various performance metrics. In this work, the swimming performance’s sensitivity to parameters is investigated for an idealized, simple anguilliform swimming model in 2D. The swimmer considered here propagates forward by dynamically varying its body curvature, similar to motion of a Caenorhabditis elegans. The parameter sensitivities were explored with respect to the fluid scale (Reynolds number), stroke (undulation) frequency, as well as a kinematic parameter controlling the velocity and acceleration of each upstroke and downstroke. The input Reynolds number and stroke frequencies sampled were from [450, 2200] and [1, 3] Hz, respectively. In total, 5000 fluid–structure interaction simulations were performed, each with a unique parameter combination selected via a Sobol sequence, in order to conduct global sensitivity analysis. Results indicate that the swimmer’s performance is most sensitive to variations in its stroke frequency. Trends in swimming performance were discovered by projecting the performance data onto particular 2D subspaces. Pareto-like optimal fronts were identified. This work is a natural extension of the parameter explorations of the same model from Battista in 2020. 
    more » « less
  5. Fish locomotion emerges from diverse interactions among deformable structures, surrounding fluids and neuromuscular activations, i.e. fluid–structure interactions (FSI) controlled by fish's motor systems. Previous studies suggested that such motor-controlled FSI may possess embodied traits. However, their implications in motor learning, neuromuscular control, gait generation, and swimming performance remain to be uncovered. Using robot models, we studied the embodied traits in fish-inspired swimming. We developed modular robots with various designs and used central pattern generators (CPGs) to control the torque acting on robot body. We used reinforcement learning to learn CPG parameters for maximizing the swimming speed. The results showed that motor frequency converged faster than other parameters, and the emergent swimming gaits were robust against disruptions applied to motor control. For all robots and frequencies tested, swimming speed was proportional to the mean undulation velocity of body and caudal-fin combined, yielding an invariant, undulation-based Strouhal number. The Strouhal number also revealed two fundamental classes of undulatory swimming in both biological and robotic fishes. The robot actuators were also demonstrated to function as motors, virtual springs and virtual masses. These results provide novel insights in understanding fish-inspired locomotion.

     
    more » « less