skip to main content


Title: Characterization of a Multifunctional Bioinspired Piezoelectric Swimmer and Energy Harvester
Fiber-based flexible piezoelectric composites with interdigitated electrodes, namely Macro-Fiber Composite (MFC) structures, strike a balance between the deformation and actuation force capabilities for effective underwater bio-inspired locomotion. These materials are also suitable for vibration-based energy harvesting toward enabling self-powered electronic components. In this work, we design, fabricate, and experimentally characterize an MFC-based bio-inspired swimmer-energy harvester platform. Following in vacuo and in air frequency response experiments, the proposed piezoelectric robotic fish platform is tested and characterized under water for its swimming performance both in free locomotion (in a large water tank) and also in a closed-loop water channel under imposed flow. In addition to swimming speed characterization under resonant actuation, hydrodynamic thrust resultant in both quiescent water and under imposed flow are quantified experimentally. We show that the proposed design easily produces thrust levels on the order of biological fish with similar dimensions. Overall it produces thrust levels higher than other smart material-based designs (such as soft material-based concepts), while offering geometric scalability and silent operation unlike large scale robotic fish platforms that use conventional and bulky actuators. The performance of this untethered swimmer platform in piezoelectric energy harvesting is also quantified by underwater base excitation experiments in a quiescent water and via vortex induced-vibration (VIV) experiments under imposed flow in a water channel. Following basic resistor sweep experiments in underwater base excitation experiments, VIV tests are conducted for cylindrical bluff body configurations of different diameters and distances from the leading edge of the energy harvesting tail portion. The resulting concept and design can find use for underwater swimmer and sensor applications such as ecological monitoring, among others.  more » « less
Award ID(s):
1705739
NSF-PAR ID:
10298707
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerical simulations are employed to study hydrodynamic interactions between two-dimensional fish-like bodies under a traveling wavy lateral motion in high-density diamond-shaped fish schools. This study focuses on two different streamwise spacings, a dense school with 0.4 body length (BL) spacing and a sparse school with 2.0 BL spacing, respectively. An immersed-boundary-method-based incompressible Navier–Strokes flow solver is then employed to quantitatively simulate the resulting flow patterns and associated propulsive performance of the schools. The results suggest that a fish in the dense school achieves higher thrust production and higher propulsive efficiency than that in the sparse school due to a strong wall effect from neighboring fishes. In addition, results from changing the lateral spacing in the dense school have shown that the wall effect is enhanced as the lateral spacing decreases. Flow analyses have shown that the wake pattern of the fish swimming diagonally behind the leading fish in a dense diamond-shaped school transfers from 2S to 2P when the lateral spacing is smaller than 0.6 BL. As a result, an angled jet is produced behind the school and brings more momentum downstream. At the same time, the appearance of the trailing fish results in a stronger pressure region behind the leading fish and leads to a higher hydrodynamic performance of the leading fish in the dense school. The insights revealed from this study will contribute to understanding physical mechanisms in fish schools and providing a new swimming strategy for bio-inspired underwater swarm robots. 
    more » « less
  2. ABSTRACT Many fishes use their tail as the main thrust producer during swimming. This fin's diversity in shape and size influences its physical interactions with water as well as its ecological functions. Two distinct tail morphologies are common in bony fishes: flat, truncate tails which are best suited for fast accelerations via drag forces, and forked tails that promote economical, fast cruising by generating lift-based thrust. This assumption is based primarily on studies of the lunate caudal fin of Scombrids (i.e. tuna, mackerel), which is comparatively stiff and exhibits an airfoil-type cross-section. However, this is not representative of the more commonly observed and taxonomically widespread flexible forked tail, yet similar assumptions about economical cruising are widely accepted. Here, we present the first comparative experimental study of forked versus truncate tail shape and compare the fluid mechanical properties and energetics of two common nearshore fish species. We examined the hypothesis that forked tails provide a hydrodynamic advantage over truncate tails at typical cruising speeds. Using experimentally derived pressure fields, we show that the forked tail produces thrust via acceleration reaction forces like the truncate tail during cruising but at increased energetic costs. This reduced efficiency corresponds to differences in the performance of the two tail geometries and body kinematics to maintain similar overall thrust outputs. Our results offer insights into the benefits and tradeoffs of two common fish tail morphologies and shed light on the functional morphology of fish swimming to guide the development of bio-inspired underwater technologies. 
    more » « less
  3. Abstract

    Vibration‐based energy harvesting for enabling next‐generation self‐powered devices is a rapidly growing research area. In real‐world applications, the ambient vibrational energy is often available in non‐deterministic forms rather than the extensively studied deterministic scenarios, such as simple harmonic excitation. It is of interest to choose the best piezoelectric material for a given random excitation. Here, performance comparisons of various soft and hard piezoelectric ceramics and single crystals are presented for electrical power generation under band‐limited off‐resonance and wideband random vibration energy‐harvesting scenarios. For low‐frequency off‐resonance excitation, it is found that soft piezoelectric ceramics based upon lead zirconate titanate (e.g., PZT‐5H and PZT‐5A) outperform their hard counterparts (e.g., PZT‐4 and PZT‐8), and likewise soft single crystals based upon lead magnesium niobate and lead titanate as well as PZT (e.g., PMN‐PT and PMN‐PZT) outperform the relatively hard ones (e.g., manganese‐doped PMN‐PZT‐Mn). Overall, for such off‐resonance random vibrations, PMN‐PT is the most suitable choice among the materials studied. For wideband random excitation with a bandwidth covering the fundamental resonance of the harvester, hard piezoelectric ceramics offer larger power output compared to soft ceramics, and likewise hard single crystals produce larger power compared to their soft counterparts. Remarkably, a hard piezoelectric ceramic (e.g., PZT‐8) can outperform a soft single crystal (e.g., PMN‐PT) for wideband random vibration energy harvesting.

     
    more » « less
  4. There has been an increasing interest in the use of autonomous underwater robots to monitor freshwater and marine environments. In particular, robots that propel and maneuver themselves like fish, often known as robotic fish, have emerged as mobile sensing platforms for aquatic environments. Highly nonlinear and often under-actuated dynamics of robotic fish present significant challenges in control of these robots. In this work, we propose a nonlinear model predictive control (NMPC) approach to path-following of a tail-actuated robotic fish that accommodates the nonlinear dynamics and actuation constraints while minimizing the control effort. Considering the cyclic nature of tail actuation, the control design is based on an averaged dynamic model, where the hydrodynamic force generated by tail beating is captured using Lighthill's large-amplitude elongated-body theory. A computationally efficient approach is developed to identify the model parameters based on the measured swimming and turning data for the robot. With the tail beat frequency fixed, the bias and amplitude of the tail oscillation are treated as physical variables to be manipulated, which are related to the control inputs via a nonlinear map. A control projection method is introduced to accommodate the sector-shaped constraints of the control inputs while minimizing the optimization complexity in solving the NMPC problem. Both simulation and experimental results support the efficacy of the proposed approach. In particular, the advantages of the control projection method are shown via comparison with alternative approaches. 
    more » « less
  5. Abstract When swimming near a solid planar boundary, bio-inspired propulsors can naturally equilibrate to certain distances from that boundary. How these equilibria are affected by asymmetric swimming kinematics is unknown. We present here a study of near-boundary pitching hydrofoils based on water channel experiments and potential flow simulations. We found that asymmetric pitch kinematics do affect near-boundary equilibria, resulting in the equilibria shifting either closer to or away from the planar boundary. The magnitude of the shift depends on whether the pitch kinematics have spatial asymmetry (e.g. a bias angle, θ 0 ) or temporal asymmetry (e.g. a stroke-speed ratio, τ ). Swimming at stable equilibrium requires less active control, while shifting the equilibrium closer to the boundary can result in higher thrust with no measurable change in propulsive efficiency. Our work reveals how asymmetric kinematics could be used to fine-tune a hydrofoil’s interaction with a nearby boundary, and it offers a starting point for understanding how fish and birds use asymmetries to swim near substrates, water surfaces, and sidewalls. 
    more » « less