Many organisms use flexible appendages for locomotion, feeding, and other functional behaviors. The efficacy of these behaviors is determined in large part by the fluid dynamics of the appendage interacting with its environment. For oscillating appendages at low Reynolds numbers, viscosity dominates over inertia, and appendage motion must be spatially asymmetric to generate net flow. At high Reynolds numbers, viscous forces are negligible and appendage motion is often also temporally asymmetric, with a fast power stroke and a slow recovery stroke; such temporal asymmetry does not affect the produced flow at low Reynolds numbers. At intermediate Reynolds numbers, both viscous and inertial forces play non-trivial roles---correspondingly, both spatial and temporal asymmetry can strongly affect overall propulsion. Here we perform experiments on three robotic paddles with different material flexibilities and geometries, allowing us to explore the effects of motion asymmetry (both spatial and temporal) on force production. We show how a flexible paddle's time-varying shape throughout the beat cycle can reorient the direction of the produced force, generating both thrust and lift. We also evaluate the propulsive performance of the paddle by introducing a new quantity, which we term integrated efficiency. This new definition of propulsive efficiency can be used to directly evaluate an appendage's performance independently from full-body swimming dynamics. Use of the integrated efficiency allows for accurate performance assessment, generalization, and comparison of oscillating appendages in both robotic devices and behaving organisms. Finally, we show that a curved flexible paddle generates thrust more efficiently than a straight paddle, and produces spatially asymmetric motion---thereby improving performance---without the need for complex actuation and controls, opening new avenues for bioinspired technology development.
- Award ID(s):
- 1806833
- NSF-PAR ID:
- 10459156
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 31
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Negatively buoyant freely swimming crustaceans such as krill must generate downward momentum in order to maintain their position in the water column. These animals use a drag-based propulsion strategy, where pairs of closely spaced swimming limbs are oscillated rhythmically from the tail to head. Each pair is oscillated with a phase delay relative to the neighbouring pair, resulting in a metachronal wave travelling in the direction of animal motion. It remains unclear how oscillations of limbs in the horizontal plane can generate vertical momentum. Using particle image velocimetry measurements on a robotic model, we observed that metachronal paddling with non-zero phase lag created geometries of adjacent paddles that promote the formation of counter-rotating vortices. The interaction of these vortices resulted in generating large-scale angled downward jets. Increasing phase lag resulted in more vertical orientation of the jet, and phase lags in the range used by Antarctic krill produced the most total momentum. Synchronous paddling produced lower total momentum when compared with metachronal paddling. Lowering Reynolds number by an order of magnitude below the range of adult krill (250–1000) showed diminished downward propagation of the jet and lower vertical momentum. Our findings show that metachronal paddling is capable of producing flows that can generate both lift (vertical) and thrust (horizontal) forces needed for fast forward swimming and hovering.more » « less
-
The bodies of most swimming fishes are very flexible and deform due to both external fluid dynamic forces and internal musculoskeletal forces. If fluid forces change, the body motion will also change unless the fish senses the change and alters its muscle activity to compensate. Lampreys and other fishes have mechanosensory cells in their spinal cords that allow them to sense how their body is bending. We hypothesized that lampreys (Petromyzon marinus) actively regulate body curvature to maintaina fairly constant swimming waveform even as swimming speed and fluid dynamic forces change. To test this hypothesis, we measured the steady swimming kinematics of lampreys swimming in normal water, and water in which the viscosity was increased by 10 or 20 times by adding methylcellulose. Increasing the viscosity over this range increases the drag coefficient, potentially increasing fluid forces up to 40%. Previous computational results suggested that if lampreys did not compensate for these forces, the swimming speed would drop by about 52%, the amplitude would drop by 39%, and posterior body curvature would increase by about 31% , while tail beat frequency would remain the same. Five juvenile sea lampreys were filmed swimming through still water, and midlines were digitized using standard techniques. Although swimming speed dropped by 44% from 1× to 10× viscosity, amplitude only decreased by 4% , and curvature increased by 7%, a much smaller change than the amount we estimated if there was no compensation. To examine the waveform overall, we performed a complex orthogonal decomposition and found that the first mode of the swimming waveform (the primary swimming pattern) did not change substantially, even at 20× viscosity. Thus, it appears that lampreys are compensating, at least partially, for the changes in viscosity, which in turn suggests that sensory feedback is involved in regulating the body waveform.
-
Abstract Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. We extended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly and trajectory optimization problems were solved with direct collocation to enable efficient computation. Standing, straight running, and curved running were simulated starting from a random initial guess to confirm the capabilities of our model and approach: efficacy, tracking and predictive power. Altogether the simulations required 1 h 17 min and corresponded well to the reference data. The prediction of curved running using straight running as tracking data revealed the necessity of avoiding interpenetration of body segments. In summary, the proposed formulation is able to efficiently predict a new motion task while preserving dynamic consistency. Hence, labor-intensive and thus costly experimental studies could be replaced by simulations for movement analysis and virtual product design.
-
Abstract Developable surfaces based on closed‐shape, planar, rotationally symmetric kirigami (RSK) sheets approximate 3D, globally curved surfaces upon (reversible) out‐of‐plane deflection. The distribution of stress and strain across the structure is characterized experimentally and by finite‐element analysis as a function of the material and cut parameters, enabling the integration with strain gauges to produce a wearable, conformal patch that can capture complex, multiaxis motion. Using the patch, real‐time tracking of shoulder joint and muscle behavior is demonstrated. The facile fabrication and unique properties of the RSK structures potentially enable wearable, textile‐integrated joint monitoring for athletic training, wellness, rehabilitation, feedback control for augmented mobility, motion of soft and traditional robotics, and other applications.