skip to main content


Title: Quartz‐in‐garnet and Ti‐in‐quartz thermobarometry: Methodology and first application to a quartzofeldspathic gneiss from eastern Papua New Guinea
Abstract

Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapmentP–Tconditions using an isotropic elastic model andP–T–Vequations of state for host and inclusion minerals. Elastic models are used to constrainP–Tcurves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the firstP–Testimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapmentP–Tconditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm−1bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress.values calculated from the 128, 206, and 464 cm−1bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm−1Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019, 234:129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an averageandof 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as theP–Tconditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. TheP–Tintersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range ofP–Tconditions thus permitting application of QuiG‐TiQ to many metamorphic rocks.

 
more » « less
NSF-PAR ID:
10459184
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Metamorphic Geology
Volume:
37
Issue:
9
ISSN:
0263-4929
Page Range / eLocation ID:
p. 1193-1208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Raman spectroscopy is widely used to identify mineral and fluid inclusions in host crystals, as well as to calculate pressure-temperature (P-T) conditions with mineral inclusion elastic thermobarometry, for example quartz-in-garnet barometry (QuiG) and zircon-in-garnet thermometry (ZiG). For thermobarometric applications, P-T precision and accuracy depend crucially on the reproducibility of Raman peak position measurements. In this study, we monitored long-term instrument stability and varied analytical parameters to quantify peak position reproducibility for Raman spectra from quartz and zircon inclusions and reference crystals. Our ultimate goal was to determine the reproducibility of calculated inclusion pressures (“Pinc”) and entrapment pressures (“Ptrap”) or temperatures (“Ttrap”) by quantifying diverse analytical errors, as well as to identify optimal measurement conditions and provide a baseline for interlaboratory comparisons. Most tests emphasized 442 nm (blue) and 532 nm (green) laser sources, although repeated analysis of a quartz inclusion in garnet additionally used a 632.8 nm (red) laser. Power density was varied from <1 to >100 mW and acquisition time from 3 to 270s. A correction is proposed to suppress interference on the ~206 cm–1 peak in quartz spectra by a broad nearby (~220 cm–1) peak in garnet spectra. Rapid peak drift up to 1 cm–1/h occurred after powering the laser source, followed by minimal drift (<0.2 cm–1/h) for several hours thereafter. However, abrupt shifts in peak positions as large as 2–3 cm–1 sometimes occurred within periods of minutes, commonly either positively or negatively correlated to changes in room temperature. An external Hg-emission line (fluorescent light) can be observed in spectra collected with the green laser and shows highly correlated but attenuated directional shifts compared to quartz and zircon peaks. Varying power density and acquisition time did not affect Raman peak positions of either quartz or zircon grains, possibly because power densities at the levels of inclusions were low. However, some zircon inclusions were damaged at higher power levels of the blue laser source, likely because of laser-induced heating. Using a combination of 1, 2, or 3 peak positions for the ~128, ~206, and ~464 cm–1 peaks in quartz to calculate Pinc and Ptrap showed that use of the blue laser source results in the most reproducible Ptrap values for all methods (0.59 to 0.68 GPa at an assumed temperature of 450 °C), with precisions for a single method as small as ±0.03 GPa (2σ). Using the green and red lasers, some methods of calculating Ptrap produce nearly identical estimates as the blue laser with similarly good precision (±0.02 GPa for green laser, ±0.03 GPa for red laser). However, using 1- and 2-peak methods to calculate Ptrap can yield values that range from 0.52 ± 0.06 to 0.93 ± 0.16 GPa for the green laser, and 0.53 ± 0.08 GPa to 1.00 ± 0.45 GPa for the red laser. Semiquantitative calculations for zircon, assuming a typical error of ±0.25 cm–1 in the position of the ~1008 cm–1 peak, imply reproducibility in temperature (at an assumed pressure) of approximately ±65 °C. For optimal applications to elastic thermobarometry, analysts should: (1) delay data collection approximately one hour after laser startup, or leave lasers on; (2) collect a Hg-emission line simultaneously with Raman spectra when using a green laser to correct for externally induced shifts in peak positions; (3) correct for garnet interference on the quartz 206 cm–1 peak; and either (4a) use a short wavelength (blue) laser for quartz and zircon crystals for P-T calculations, but use very low-laser power (<12 mW) to avoid overheating and damage or (4b) use either the intermediate wavelength (green; quartz and zircon) or long wavelength (red; zircon) laser for P-T calculations, but restrict calculations to specific methods. Implementation of our recommendations should optimize reproducibility for elastic geothermobarometry, especially QuiG barometry and ZiG thermometry. 
    more » « less
  2. Abstract

    Quartz‐in‐garnet elastic geobarometry (QuiG) pressures in rocks from two Barrovian metamorphic terranes in the western US Cordilleran hinterland exceed pressures determined using chemical thermodynamics by 3–4 kbar. For this study, 135 quartz inclusions from the Funeral Mountains, California, were analysed using QuiG in five garnets from three locations representing metamorphic grades of upper greenschist, lower amphibolite, and middle amphibolite facies. From a second Barrovian terrane, the Wood Hills in northeastern Nevada, 125 quartz inclusions were analysed using QuiG in 14 garnets from a single rock sample metamorphosed to middle amphibolite facies. Pressures determined for rocks in the Funeral Mountains using QuiG and methods rooted in equilibrium thermodynamics yielded consistent pressure differences between locations, but QuiG pressures are higher. Similarly, QuiG pressures determined for rocks in the Wood Hills are higher than pressures determined by equilibrium thermodynamic approaches. Possible explanations for the pressure differences include garnet compositions not reflecting equilibrium, sources of error in thermodynamic calculations such as thermodynamic data or a‐X models, or an unknown source of systematic error that causes QuiG to overestimate pressures of entrapment. To test Raman spectroscopy's ability to reproduce inclusion pressures, pressures were calculated using Raman spectroscopy and synchrotron X‐ray diffraction, which yielded consistent pressures and support the use of the single mode‐shift of the 464 cm−1band of quartz for geobarometry, which simplifies the method by assuming hydrostatic compression of quartz. These results are compared with pressures obtained using Grüneisen tensors and show consistency between these different approaches.

     
    more » « less
  3. Abstract

    We present a flow law for dislocation‐dominated creep in wet quartz derived from compiled experimental and field‐based rheological data. By integrating the field‐based data, including independently calculated strain rates, deformation temperatures, pressures, and differential stresses, we add constraints for dislocation‐dominated creep at conditions unattainable in quartz deformation experiments. A Markov Chain Monte Carlo (MCMC) statistical analysis computes internally consistent parameters for the generalized flow law: = Aσne−(Q+VP)/RT. From this initial analysis, we identify differenteffectivestress exponents for quartz deformed at confining pressures above and below ∼700 MPa. To minimize the possible effect of confining pressure, compiled data are separated into “low‐pressure” (<560 MPa) and “high‐pressure” (700–1,600 MPa) groups and reanalyzed using the MCMC approach. The “low‐pressure” data set, which is most applicable at midcrustal to lower‐crustal confining pressures, yields the following parameters: log(A) = −9.30 ± 0.66 MPanr s−1;n = 3.5 ± 0.2;r = 0.49 ± 0.13;Q = 118 ± 5 kJ mol−1; andV = 2.59 ± 2.45 cm3 mol−1. The “high‐pressure” data set produces a different set of parameters: log(A) = −7.90 ± 0.34 MPanr s−1;n = 2.0 ± 0.1;r = 0.49 ± 0.13;Q = 77 ± 8 kJ mol−1; andV = 2.59 ± 2.45 cm3 mol−1. Predicted quartz rheology is compared to other flow laws for dislocation creep; the calibrations presented in this study predict faster strain rates under geological conditions by more than 1 order of magnitude. The change innat high confining pressure may result from an increase in the activity of grain size sensitive creep.

     
    more » « less
  4. Abstract A comparative analysis of Raman shifts of quartz inclusions in garnet was made along two traverses across the Connecticut Valley Trough (CVT) in western New England, USA, to examine the regional trends of quartz inclusion in garnet (QuiG) Raman barometry pressure results and to compare this method with conventional thermobarometry and the method of intersecting garnet core isopleths. Overall, Raman shifts of quartz inclusions ranged from 1·2 to 3·5 cm–1 over all field areas and displayed a south to north decrease, matching the overall decrease in mapped metamorphic grade. Raman shifts of quartz inclusions typically did not show systematic variation with respect to their radial position within a garnet crystal, and indicate that garnet probably grew at nearly isothermal and isobaric pressure–temperature (P–T) conditions. The P–T conditions inferred from conventional thermobarometry were in the range of ∼500–575 °C and ∼7·4–10·3 kbar over the sample suite and are in good agreement with previous published thermobarometry throughout the CVT. These P–T results are broadly consistent with QuiG barometry and also suggest that garnet grew isothermally and isobarically at near peak P–T conditions. However, P–T conditions and P–T paths inferred using either garnet core thermobarometry or garnet core intersecting isopleths yield results that are internally inconsistent and generally disagree with the pressure results from QuiG barometry. Garnet core isopleth intersections consistently plotted between the nominal garnet-in curve on mineral assemblage diagrams and the P–T conditions constrained by QuiG isomekes for the majority of the sample suite. Additionally, most samples’ P–T results from QuiG barometry and rim thermobarometry show marked disagreement from those derived from garnet core thermobarometry, compared with the minority that showed agreement within uncertainty. Pressures calculated from QuiG barometry ranged from 8·5 to 9·5 kbar along the traverses in western Massachusetts (MA) and central Vermont (VT) and from 6·5 to 7·5 kbar in northern VT indicating an increase in peak burial of 3–6 km from north to south. Along the western end of the central VT traverse, there are differences in measured Raman shifts and inferred peak pressures of up to 1 kbar across the Richardson Memorial Contact (RMC), indicating a possible fault contact with minor post-peak metamorphic shortening of up to ∼3 km. In contrast, along an east–west traverse in the vicinity of the Goshen Dome, MA, there was little observed variation in Raman shifts across the contact. By contrast, QuiG barometry clearly indicates significant discontinuities in peak pressure east of the Strafford Dome in central VT. This supports the interpretation that post-peak metamorphic shortening was necessary to juxtapose upper staurolite–kyanite zone rocks next to lower garnet zone pelites. Overall, it is concluded that garnet core thermobarometry and garnet core isopleths may provide unreliable results for the P–T conditions of garnet nucleation and inferred P–T paths during garnet growth unless independently verified. The consistency of QuiG results with rim thermobarometry indicates that peak metamorphic conditions previously reported for the CVT using garnet rim thermobarometry are robust and that variation in QuiG barometry results is a valuable tool to analyze structural features within a metamorphic terrane. 
    more » « less
  5. Abstract

    The degassing of CO2and S from arc volcanoes is fundamentally important to global climate, eruption forecasting, ore deposits, and the cycling of volatiles through subduction zones. However, all existing thermodynamic/empirical models have difficulties reproducing CO2‐H2O‐S trends observed in melt inclusions and provide widely conflicting results regarding the relationships between pressure and CO2/SO2in the vapor. In this study, we develop an open‐source degassing model, Sulfur_X, to track the evolution of S, CO2, H2O, and redox states in melt and vapor in ascending mafic‐intermediate magma. Sulfur_X describes sulfur degassing by parameterizing experimentally derived sulfur partition coefficients for two equilibria: RxnI. FeS (m) + H2O (v H2S (v) + FeO (m), and RxnII. CaSO4(m)  SO2(v) + O2(v) + CaO (m), based on the sulfur speciation in the melt (m) and co‐existing vapor (v). Sulfur_X is also the first to track the evolution offO2and sulfur and iron redox states accurately in the system using electron balance and equilibrium calculations. Our results show that a typical H2O‐rich (4.5 wt.%) arc magma with high initial S6+/ΣS ratio (>0.5) will degas much more (∼2/3) of its initial sulfur at high pressures (>200 MPa) than H2O‐poor ocean island basalts with low initial S6+/ΣS ratio (<0.1), which will degas very little sulfur until shallow pressures (<50 MPa). The pressure‐S relationship in the melt predicted by Sulfur_X provides new insights into interpreting the CO2/STratio measured in high‐T volcanic gases in the run‐up to the eruption.

     
    more » « less