skip to main content


Title: Using KCWI to Explore the Chemical Inhomogeneities and Evolution of J1044+0353
Abstract

J1044+0353 is considered a local analog of the young galaxies that ionized the intergalactic medium at high redshift due to its low mass, low metallicity, high specific star formation rate, and strong high-ionization emission lines. We use integral field spectroscopy to trace the propagation of the starburst across this small galaxy using Balmer emission- and absorption-line equivalent widths and find a poststarburst population (∼15–20 Myr) roughly 1 kpc east of the much younger, compact starburst (∼3–4 Myr). Using the direct electron temperature method to map the O/H abundance ratio, we find similar metallicities (1–3σ) between the starburst and poststarburst regions but with a significant dispersion of about 0.3 dex within the latter. We also map the Doppler shift and width of the strong emission lines. Over scales several times the size of the galaxy, we discover a velocity gradient parallel to the galaxy’s minor axis. The steepest gradients (∼30 km s−1kpc−1) appear to emanate from the oldest stellar association. We identify the velocity gradient as an outflow viewed edge on based on the increased line width and skew in a biconical region. We discuss how this outflow and the gas inflow necessary to trigger the starburst affect the chemical evolution of J1044+0353. We conclude that the stellar associations driving the galactic outflow are spatially offset from the youngest association, and a chemical evolution model with a metal-enriched wind requires a more realistic inflow rate than a homogeneous chemical evolution model.

 
more » « less
Award ID(s):
1817125
NSF-PAR ID:
10459411
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 214
Size(s):
Article No. 214
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The molecular gas in galaxies traces both the fuel for star formation and the processes that can enhance or suppress star formation. Observations of the molecular gas state can thus point to when and why galaxies stop forming stars. In this study, we present Atacama Large Millimeter/submillimeter Array observations of the molecular gas in galaxies evolving through the post-starburst phase. These galaxies have low current star formation rates (SFRs), regardless of the SFR tracer used, with recent starbursts ending within the last 600 Myr. We present CO (3–2) observations for three post-starburst galaxies, and dense gas HCN/HCO+/HNC (1–0) observations for six (four new) post-starburst galaxies. The post-starbursts have low excitation traced by the CO spectral-line energy distribution up to CO (3–2), more similar to early-type than starburst galaxies. The low excitation indicates that lower density rather than high temperatures may suppress star formation during the post-starburst phase. One galaxy displays a blueshifted outflow traced by CO (3–2). MaNGA observations show that the ionized gas velocity is disturbed relative to the stellar velocity field, with a blueshifted component aligned with the molecular gas outflow, suggestive of a multiphase outflow. Low ratios of HCO+/CO, indicating low fractions of dense molecular gas relative to the total molecular gas, are seen throughout post-starburst phase, except for the youngest post-starburst galaxy considered here. These observations indicate that the impact of any feedback or quenching processes may be limited to low excitation and weak outflows in the cold molecular gas during the post-starburst phase.

     
    more » « less
  2. Abstract We present spatially resolved spectroscopy from the Keck Cosmic Web Imager (KCWI) of a star-forming galaxy at z = 0.6942, which shows emission from the Mg ii λ λ 2796, 2803 doublet in the circumgalactic medium (CGM) extending ∼37 kpc at 3 σ significance in individual spaxels (1 σ detection limit 4.8 × 10 −19 erg s −1 cm −2 arcsec −2 ). The target galaxy, selected from a near-UV spectroscopic survey of Mg ii line profiles at 0.3 < z < 1.4, has a stellar mass log ( M * / M ⊙ ) = 9.9, a star formation rate of 50 M ⊙ yr −1 , and a morphology indicative of a merger. After deconvolution with the seeing, we obtain 5 σ detections of Mg ii line emission extending for ∼31 kpc measured in 7-spaxel (1.1 arcsec 2 ) apertures. Spaxels covering the galaxy stellar regions show clear P Cygni−like emission/absorption profiles, with the blueshifted absorption extending to relative velocities of v = −800 km s −1 ; however, the P Cygni profiles give way to pure emission at large radii from the central galaxy. We have performed 3D radiative transfer modeling to infer the geometry and velocity and density profiles of the outflowing gas. Our observations are most consistent with an isotropic outflow rather than biconical wind models with half-opening angles ϕ ≤ 80°. Furthermore, our modeling suggests that a wind velocity profile that decreases with radius is necessary to reproduce the velocity widths and strengths of Mg ii line emission profiles at large circumgalactic radii. The extent of the Mg ii emission we measure directly is further corroborated by our modeling, where we rule out outflow models with extent <30 kpc. 
    more » « less
  3. Abstract

    A compact source, G0.02467–0.0727, was detected in Atacama Large Millimeter/submillimeter Array 3 mm observations in continuum and very broad line emission. The continuum emission has a spectral indexα≈ 3.3, suggesting that the emission is from dust. The line emission is detected in several transitions of CS, SO, and SO2and exhibits a line width FWHM ≈ 160 km s−1. The line profile appears Gaussian. The emission is weakly spatially resolved, coming from an area on the sky ≲1″ in diameter (≲104au at the distance of the Galactic center, GC). The centroid velocity isvLSR≈ 40–50 km s−1, which is consistent with a location in the GC. With multiple SO lines detected, and assuming local thermodynamic equilibrium (LTE) conditions, the gas temperature isTLTE= 13 K, which is colder than seen in typical GC clouds, though we cannot rule out low-density, subthermally excited, warmer gas. Despite the high velocity dispersion, no emission is observed from SiO, suggesting that there are no strong (≳10 km s−1) shocks in the molecular gas. There are no detections at other wavelengths, including X-ray, infrared, and radio. We consider several explanations for the millimeter ultra-broad-line object (MUBLO), including protostellar outflow, explosive outflow, a collapsing cloud, an evolved star, a stellar merger, a high-velocity compact cloud, an intermediate-mass black hole, and a background galaxy. Most of these conceptual models are either inconsistent with the data or do not fully explain them. The MUBLO is, at present, an observationally unique object.

     
    more » « less
  4. null (Ed.)
    ABSTRACT Haro 2, a nearby dwarf starburst dwarf galaxy with strong Ly α emission, hosts a starburst that has created outflows and filaments. The clear evidence for galactic outflow makes it an ideal candidate for studying the role of molecular gas in feedback processes in a dwarf galaxy. We observed CO(2–1) in Haro 2 at the Submillimeter Array in the compact and extended configurations, and have mapped the molecular emission with velocity resolution 4.1 km s−1 and spatial resolution 2.0 × 1.6 arcsec2. With this significant increase of resolution over previous measurements, we see that the molecular gas comprises two components: bright clumps associated with the embedded star clusters of the starburst, and fainter extended emission east of the starburst region. The extended emission coincides with an X-ray bubble and has the kinematic signatures of an outflowing cone or of an expanding shell or bubble; the velocity range is ∼35 km s−1. We suggest that the starburst winds that created the X-ray bubble have entrained the molecular gas, and that the apparent velocity gradient at an angle to the photometric axis is an artefact caused by the outflow. The molecular and X-ray activity is on the east of the galaxy and the ionized outflow and optical filaments are west; their relationship is not clear. 
    more » « less
  5. Abstract

    We present results on the properties of extreme gas outflows in massive (M*∼ 1011M), compact, starburst (star formation rate, SFR∼ 200Myr−1) galaxies atz= 0.4–0.7 with very high star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies, we identify outflows with maximum velocities of 820–2860 km s−1. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T∼ 104K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies’ star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong Mgiiabsorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of ∼50–2200Myr−1, assuming a fiducial outflow size of 5 kpc, and mass loading factors ofη∼ 5 for most of the sample. While these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution.

     
    more » « less