The dynamics of marine-terminating outlet glaciers are of fundamental interest in glaciology, and affect mass loss from ice sheets in a warming climate. In this study, we analyze the response of outlet glaciers to different sources of climate forcing. We find that outlet glaciers have a characteristically different transient response to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. A recently developed reduced model represents outlet glacier dynamics via two widely-separated response timescales: a fast response associated with grounding-zone dynamics, and a slow response of interior ice. The reduced model is shown to emulate the behavior of a more complex numerical model of ice flow. Together, these models demonstrate that ocean forcing first engages the fast, local response, and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. We also demonstrate the importance of the timescales of stochastic forcing for assessing the natural variability of outlet glaciers, highlighting that decadal persistence in ocean variability can affect the behavior of outlet glaciers on centennial and longer timescales. Finally, we show that these transient responses have important implications for: attributing observed glacier changes to natural or anthropogenic influences; the future change already committed by past forcing; and the impact of past climate changes on the preindustrial glacier state, against which current and future anthropogenic influences are assessed.
more »
« less
A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers
Projections of the growth and demise of ice sheets and glaciers require physical models of the processes governing flow and fracture of ice. The flow of glacier ice has been treated using increasingly sophisticated models. By contrast, fracture, the process ultimately responsible for half of the mass lost from ice sheets through iceberg calving, is often included using ad hoc parameterizations. In this study we seek to bridge this gap by introducing a model where ice obeys a power law rheology appropriate for intact ice below a yield strength. Above the yield strength, we introduce a separate rheology appropriate for the flow of heavily fractured ice, where ice deformation occurs more readily along faults and fractures. We show that, provided the motion of fractured ice is sufficiently rapid compared to that of intact ice, the behavior of glaciers depends solely on the rheology of intact ice and the yield strength of ice and is insensitive to the precise rheology of fractured ice. Moreover, assuming that glacier ice is unyielded allows us to bound the long‐term average rate of terminus advance, providing a first principles estimate of rates of retreat associated with the marine ice cliff instability. We illustrate model behavior using idealized geometries and climate forcing and show that the model not only exhibits realistic patterns of advance and retreat but also has the potential to exhibit hysteresis. This hysteresis could provide an explanation for the sudden onset of rapid retreat observed in marine‐terminating glaciers.
more »
« less
- Award ID(s):
- 1738896
- PAR ID:
- 10459486
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 124
- Issue:
- 8
- ISSN:
- 2169-9003
- Page Range / eLocation ID:
- p. 2036-2055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The dynamics of marine-terminating outlet glaciers are of fundamental interest in glaciology and affect mass loss from ice sheets in a warming climate. In this study, we analyze the response of outlet glaciers to different sources of climate forcing. We find that outlet glaciers have a characteristically different transient response to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. A recently developed reduced model represents outlet-glacier dynamics via two widely separated response timescales: a fast response associated with grounding-zone dynamics and a slow response of interior ice. The reduced model is shown to emulate the behavior of a more complex numerical model of ice flow. Together, these models demonstrate that ocean forcing first engages the fast, local response and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. We also demonstrate the importance of the timescales of stochastic forcing for assessing the natural variability in outlet glaciers, highlighting that decadal persistence in ocean variability can affect the behavior of outlet glaciers on centennial and longer timescales. Finally, we show that these transient responses have important implications for attributing observed glacier changes to natural or anthropogenic influences; the future change already committed by past forcing; and the impact of past climate changes on the preindustrial glacier state, against which current and future anthropogenic influences are assessed.more » « less
-
Abstract Iceberg calving, the process where icebergs detach from glaciers, remains poorly understood. Moreover, few parameterizations of the calving process can easily be integrated into numerical models to accurately capture observations, resulting in large uncertainties in projected sea level rise. Recent efforts have focused on estimating crevasse depths assuming tensile failure occurs when crevasses fully penetrate the glacier thickness. However, these approaches often ignore the role of advecting crevasses on calculations of crevasse depth. Here, we examine a more general crevasse depth calving model that includes crevasse advection. We apply this model to idealized prograde and retrograde bed geometries as well as a prograde geometry with a sill. Neglecting crevasse advection results in steady glacier advance and ice tongue formation for all ice temperatures, sliding law coefficients and constant slope bed geometries considered. In contrast, crevasse advection suppresses ice tongue formation and increases calving rates, leading to glacier retreat. Furthermore, crevasse advection allows a grounded calving front to stabilize on top of sills. These results suggest that crevasse advection can radically alter calving rates and hint that future parameterizations of fracture and failure need to more carefully consider the lifecycle of crevasses and the role this plays in the calving process.more » « less
-
Abstract Increasing ice flux from glaciers retreating over deepening (retrograde) bed topography has been implicated in the recent acceleration of mass loss from the Greenland and Antarctic ice sheets. We show in observations that some glaciers have remained at peaks in bed topography without retreating despite enduring significant changes in climate. Observations also indicate that some glaciers which persist at bed peaks undergo sudden retreat years or decades after the onset of local ocean or atmospheric warming. Using model simulations, we show that persistence of a glacier at a bed peak is caused by ice slowing as it flows up a reverse-sloping bed to the peak. Persistence at bed peaks may lead to two very different future behaviors for a glacier: one where it persists at a bed peak indefinitely, and another where it retreats from the bed peak after potentially long delays following climate forcing. However, it is nearly impossible to distinguish which of these two future behaviors will occur from current observations. We conclude that inferring glacier stability from observations of persistence obscures our true commitment to future sea-level rise under climate change. We recommend that further research is needed on seemingly stable glaciers to determine their likely future.more » « less
-
Abstract Frontal ablation processes at marine‐terminating glaciers are challenging to observe and difficult to represent in numerical ice flow models, yet play critical roles in modulating ice sheet mass balance. Current ice sheet models typically rely on simple iceberg calving models to prescribe either terminus positions or iceberg calving rates, but the relative accuracies and uncertainties of these calving models remain largely unconstrained at the ice sheet scale. Here, we evaluate six published iceberg calving models against spatially and temporally diverse observations from 50 marine‐terminating outlet glaciers in Greenland. We seek the single model that best reproduces observed conditions across all glaciers, at all observation times, and with low sensitivity to calibration uncertainty. Five of six calving models can produce unbiased estimates of calving position or calving rate at the ice sheet scale. However, time series analysis reveals that, when using a single, optimized model parameter, rate‐predicting calving models frequently yield calving rate errors in excess of 10 m d−1. In comparison, terminus position‐predicting calving models more accurately track observed changes in terminus position (remaining within ~1 km of the observed grounded terminus position). Overall, our results indicate that the crevasse depth calving model provides the best balance of high accuracy and low sensitivity to imperfect parameter calibration. While the crevasse depth model appears unlikely to capture the true controls on crevasse penetration, numerically, it reproduces observed terminus dynamics with high fidelity and should be considered a leading candidate for use in models of the Greenland Ice Sheet.more » « less
An official website of the United States government
