skip to main content


Title: Late Quaternary Tectonics, Incision, and Landscape Evolution of the Calchaquí River Catchment, Eastern Cordillera, NW Argentina
Abstract

Unraveling the relative impacts of climate, tectonics, and lithology on landscape evolution is complicated by the temporal and spatial scale over which observations are made. We use soil and desert pavement classification, longitudinal river profiles,10Be‐derived catchment mean modern and paleo‐erosion rates, and vertical incision rates to test whether, if we restrict our analyses to a spatial scale over which climate is relatively invariant, tectonic and lithologic factors will dominate the late Quaternary landscape evolution of the Calchaquí River Catchment, NW Argentina. We find that the spatial distribution of erosion rates, normalized channel steepness indices, and concavity indices reflect active tectonics and lithologic resistance. Knickpoints are spatially coincident with tectonic and/or lithologic discontinuities, indicating local base‐level control by faulting. Catchment mean erosion rates, ranging from 22.5 ± 2.6 to 121.9 ± 13.7 mm/kyr, and paleo‐erosion rates, ranging from 56+43/‐19to 105+60/‐33mm/kyr, are similar, possibly suggesting that Quaternary climate changes have not had a strong enough influence on erosion rates to be detected using cosmogenic10Be. However, punctuated abandonment of pediment and strath terraces at 43.6+15.0/‐11.6, 91.2+54.2/‐22.2, and 151+92.7/‐34.1ka and disparities between vertical incision rates and catchment mean erosion rates could suggest periods of landscape transience, possibly reflecting climate cyclicity. Our results emphasize the role of tectonic uplift and lithologic contrasts in shaping long‐term erosion rates and channel morphology at the relatively local scale of the Calchaqui River Catchment, in contrast to regional‐scale studies which find precipitation to exert the dominant control.

 
more » « less
NSF-PAR ID:
10459576
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
124
Issue:
8
ISSN:
2169-9003
Page Range / eLocation ID:
p. 2265-2287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mountain landscapes have dynamic climates that, together with tectonic processes, influence their topographic evolution. Spatial and temporal variations in rainfall are ubiquitous in these settings as orographic precipitation patterns evolve with climate change and topography. Despite important implications such changes have for river incision, their influence is understudied. Here, we investigate how changes in rainfall pattern should affect both the steady state form and transient evolution of river profiles at the catchment scale using the stream power model. We find that spatially varied rainfall patterns can complicate steady state relationships between mean rainfall, channel steepness and fluvial relief, depending on where rainfall is concentrated in catchments, and lead to unexpected transient behavior if they are neglected. Specifically, changes in rainfall pattern cause multi‐stage transient responses that differ from responses to uniform changes in rainfall. Disparate responses by rivers that experience different rainfall conditions, particularly trunk and tributary rivers, are also an important factor in understanding catchment‐wide responses to climate change. Accounting for such disparities in sampling strategies and topographic analyses may, therefore, be vital for detecting and quantifying climate's role in landscape evolution. Lastly, we show how explicitly accounting for rainfall patterns in channel steepness indices, and thus spatial variations in erosional efficiency, may advance understanding of landscape sensitivity to climate. These results have important implications for detecting transient responses to changes in rainfall pattern (and more broadly climate), interpretation of morphometrics in steady state and transient landscapes, and quantifying the sensitivity of landscapes and erosion rates to climate.

     
    more » « less
  2. Abstract

    Cosmogenic nuclide analysis of river sediment provides insight into catchment‐wide erosion rates and dynamics. Here, we investigate spatial patterns and controls on10Be‐inferred erosion rates in Madagascar, a moderately seismically active microcontinent surrounded by passive margins with locally steep topography and a climate that varies from humid tropical to semiarid. We use a compiled dataset of 99 detrital10Be measurements, 63 of which are new, covering more than 30% of the country and a wide range of topographic, bioclimatic and geologic characteristics. Overall,10Be erosion rates are low (2.4–51.1 mm kyr−1), with clear differences between regions. The lowest rates are measured on the central highlands ( 8 mm kyr−1), in the Alaotra–Ankay graben ( 11 mm kyr−1) and in the large north‐central catchments ( 11 mm kyr−1). Higher rates are found on the steep eastern escarpment ( 20 mm kyr−1), in the northwest ( 31 mm kyr−1) and in the southwest ( 29 mm kyr−1). A stepwise linear regression model identified elevation as the main factor associated with variations in10Be erosion rates (lower rates for higher catchments). Random within‐between statistical models (REWB), on the other hand, indicated that the differences between different regions can be explained by differences in river concavity, seismic events and gully (lavaka) densities, whereas additional variation within regions is only linked to seismicity. We find no correlation between catchment or river steepness and10Be‐inferred erosion rates. Our results indicate that in Madagascar, long‐term erosion rates are overall low and that simple topography‐based models do not explain variations in rates of landscape change inferred from10Be concentrations in river sediment. We demonstrate that identifying different regions aids in interpreting spatial patterns of erosion rates and that REWB models can be a powerful tool in deciphering environmental controls on10Be erosion rates.

     
    more » « less
  3. Abstract

    How tectonic forcing, expressed as base level change, is encoded in the stratigraphic and geomorphic records of coupled source‐to‐sink systems remains uncertain. Using sedimentological, geochronological and geomorphic approaches, we describe the relationship between transient topographic change and sediment deposition for a low‐storage system forced by rapid rock uplift. We present five new luminescence ages and two terrestrial cosmogenic nuclide paleo‐erosion rates for the late Pleistocene Pagliara fan‐delta complex and we model corresponding base level fall history and erosion of the source catchment located on the Ionian flank of the Peloritani Mountains (NE‐Sicily, Italy). The Pagliara delta complex is part of the broader Messina Gravel‐and‐Sands lithostratigraphic unit that outcrops along the Peloritani coastal belt as extensional basins have been recently inverted by both normal faults and regional uplift at the Messina Straits. The deltas exposed at the mouth of the Pagliara River have constructional tops at ca. 300 m a.s.l. and onlap steeply east‐dipping bedrock at the coast to thickness between ca. 100 and 200 m. Five infrared‐stimulated luminescence (IRSL) ages collected from the delta range in age from ca. 327 to 208 ka and indicate a vertical long‐term sediment accumulation rate as rapid as ca. 2.2 cm/yr during MIS 7. Two cosmogenic10Be concentrations measured in samples of delta sediment indicate paleo‐erosion rates during MIS 8–7 near or slightly higher than the modern rates of ca. 1 mm/yr. Linear inversion of Pagliara fluvial topography indicates an unsteady base level fall history in phase with eustasy that is superimposed on a longer, tectonically driven trend that doubled in rate from ca. 0.95 to 1.8 mm/yr in the past 150 ky. The combination of footwall uplift rate and eustasy determines the accommodation space history to trap the fan‐deltas at the Peloritani coast in hanging wall basins, which are now inverted, uplifted and exposed hundreds of metres above the sea level.

     
    more » « less
  4. null (Ed.)
    Abstract. Landslides are the main source of sediment in most mountain ranges. Rivers then act as conveyor belts, evacuating landslide-derived sediment. Sediment dynamics are known to influence landscape evolution through interactions among landslide sediment delivery, fluvial transport and river incision into bedrock. Sediment delivery and its interaction with river incision therefore control the pace of landscape evolution and mediate relationships among tectonics, climate and erosion. Numerical landscape evolution models (LEMs) are well suited to study the interactions among these surface processes. They enable evaluation of a range of hypotheses at varying temporal and spatial scales. While many models have been used to study the dynamic interplay between tectonics, erosion and climate, the role of interactions between landslide-derived sediment and river incision has received much less attention. Here, we present HyLands, a hybrid landscape evolution model integrated within the TopoToolbox Landscape Evolution Model (TTLEM) framework. The hybrid nature of the model lies in its capacity to simulate both erosion and deposition at any place in the landscape due to fluvial bedrock incision, sediment transport, and rapid, stochastic mass wasting through landsliding. Fluvial sediment transport and bedrock incision are calculated using the recently developed Stream Power with Alluvium Conservation and Entrainment (SPACE) model. Therefore, rivers can dynamically transition from detachment-limited to transport-limited and from bedrock to bedrock–alluvial to fully alluviated states. Erosion and sediment production by landsliding are calculated using a Mohr–Coulomb stability analysis, while landslide-derived sediment is routed and deposited using a multiple-flow-direction, nonlinear deposition method. We describe and evaluate the HyLands 1.0 model using analytical solutions and observations. We first illustrate the functionality of HyLands to capture river dynamics ranging from detachment-limited to transport-limited conditions. Second, we apply the model to a portion of the Namche Barwa massif in eastern Tibet and compare simulated and observed landslide magnitude–frequency and area–volume scaling relationships. Finally, we illustrate the relevance of explicitly simulating landsliding and sediment dynamics over longer timescales for landscape evolution in general and river dynamics in particular. With HyLands we provide a new tool to understand both the long- and short-term coupling between stochastic hillslope processes, river incision and source-to-sink sediment dynamics. 
    more » « less
  5. Abstract

    The Late Miocene and Pliocene Quillagua depocenter lake system existed in a forearc basin on the west side of the Andes Mountains in northern Chile, alternating between standing-water and salar conditions. Quaternary incision of the Loa River Canyon resulted in bypass of the prior depositional surface and drainage of groundwater from the abandoned depocenter. Systematic regional geological mapping, 32 new chronological constraints on the strata in the basin, outcrop-scale facies analyses, and geophysical data underpin a revised evaluation of the controls on the lake system. The progressive stages, ages, and causes of the Quaternary destruction of the lake system are reconstructed based on mapped distributions of superficial fluvial sediments, chronological studies of terrace deposits, and landform analysis. The lake system occurred at the junction of small catchments draining the slowly rising western Andean foothills and the large paleo-Loa River catchment draining the Andean volcanic arc, during a time span of intense caldera activity. Small magnitude climate variability affected both the hyperarid low elevation sectors and arid upper sectors of the catchments. By 10 Ma, the regional climate was extremely arid, limiting water and sediment to small amounts, and during the Late Miocene and Pliocene, there was no surface-water outlet to the Pacific. Hydrological variations from 9 to 2.6 Ma led to sediment accumulation in variable lake environments, alternating with long hiatuses. Minor deformation within the Quillagua depocenter shifted the topographic axis and groundwater outlets. Simultaneous headward erosion from the Pacific shore captured the Loa River, which triggered large-magnitude incision that persists today. The progression of surface water environmental change was accompanied by changing composition and amount of surface and groundwater, which determined deposition of primary evaporite minerals, extensive diagenesis, and eventually, complex patterns of dissolution expressed as karst.

     
    more » « less