skip to main content


Search for: All records

Award ID contains: 1707585

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A vertically aligned carbon nanofiber (VACNF) array with unique conically stacked graphitic structure directly grown on a planar Cu current collector (denoted as VACNF/Cu) is used as a high‐porosity 3D host to overcome the commonly encountered issues of Li metal anodes. The excellent electrical conductivity and highly active lithiophilic graphitic edge sites facilitate homogenous coaxial Li plating/stripping around each VACNF and forming a uniform solid electrolyte interphase. The high specific surface area effectively reduces the local current density and suppresses dendrite growth during the charging/discharging processes. Meanwhile, this open nanoscale vertical 3D structure eliminates the volume changes during Li plating/stripping. As a result, highly reversible Li plating/stripping with high coulombic efficiency is achieved at various current densities. A low voltage hysteresis of 35 mV over 500 h in symmetric cells is achieved at 1 mA cm−2with an areal Li plating capacity of 2 mAh cm−2, which is far superior to the planar Cu current collector. Furthermore, a Li–S battery using a S@PAN cathode and a lithium‐plated VACNF/Cu (VACNF/Cu@Li) anode with slightly higher capacity (2 mAh cm−2) exhibits an excellent rate capability and high cycling stability with no capacity fading over 600 cycles.

     
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. This study reports the preparation of a set of hybrid materials consisting of molybdenum disulfide (MoS 2 ) nanopatches on reduced graphene oxide (rGO) nanosheets by microwave specific heating of graphene oxide and molecular molybdenum precursors followed by thermal annealing in 3% H 2 and 97% Ar. The microwave process converts graphene oxide to ordered rGO nanosheets that are sandwiched between uniform thin layers of amorphous molybdenum trisulfide (MoS 3 ). The subsequent thermal annealing converts the intermediate layers into MoS 2 nanopatches with two-dimensional layered structures whose defect density is tunable by controlling the annealing temperature at 250, 325 and 600 °C, respectively. All three MoS 2 /rGO samples and the MoS 3 /rGO intermediate after the microwave step show a high Li-ion intercalation capacity in the initial 10 cycles (over 519 mA h g MoSx −1 , ∼3.1 Li + ions per MoS 2 ) which is attributed to the small MoS 2 nanopatches in the MoS 2 /rGO hybrids while the effect of further S-rich defects is insignificant. In contrast, the Zn-ion storage properties strongly depend on the defects in the MoS 2 nanopatches. The highly defective MoS 2 /rGO hybrid prepared by annealing at 250 °C shows the highest initial Zn-ion storage capacity (∼300 mA h g MoSx −1 ) and close to 100% coulombic efficiency, which is dominated by pseudocapacitive surface reactions at the edges or defects in the MoS 2 nanopatches. The fast fading in the initial cycles can be mitigated by applying higher charge/discharge currents or extended cycles. This study validates that defect engineering is critical for improving Zn-ion storage. 
    more » « less
  4. null (Ed.)
    Through diversity of composition, sequence, and interfacial structure, hybrid materials greatly expand the palette of materials available to access novel functionality. The NSF Division of Materials Research recently supported a workshop (October 17–18, 2019) aiming to (1) identify fundamental questions and potential solutions common to multiple disciplines within the hybrid materials community; (2) initiate interfield collaborations between hybrid materials researchers; and (3) raise awareness in the wider community about experimental toolsets, simulation capabilities, and shared facilities that can accelerate this research. This article reports on the outcomes of the workshop as a basis for cross-community discussion. The interdisciplinary challenges and opportunities are presented, and followed with a discussion of current areas of progress in subdisciplines including hybrid synthesis, functional surfaces, and functional interfaces. 
    more » « less