skip to main content


Title: Dispersal and nutrient limitations of decomposition above the forest floor: Evidence from experimental manipulations of epiphytes and macronutrients
Abstract

Decomposition is a major component of global carbon cycling. However, approximately 50% of wood necromass and a small proportion of leaf litter do not contact the forest floor, and the factors that regulate the decomposition above the forest floor are largely untested. We hypothesized that separation from soil resources causes slower decomposition rates above the forest floor. Specifically, we tested whether slower decomposition results from decreased nutrient availability (the nutrient limitation hypothesis) and/or microbial dispersal limitation (the dispersal limitation hypothesis) in the absence of soil resources.

We tested these hypotheses by combining experimental manipulations of epiphytes and macronutrient fertilization with elemental analyses and community metabarcoding (fungi and prokaryotes). Specifically, we compared wood stick and cellulose decomposition among three treatments: an unaltered trunk section, an epiphyte mat, and a ‘removal treatment’ where an epiphyte mat was removed to test the effect of soil resources. We also performed a factorial fertilization experiment to test the effects of nitrogen (N) and phosphorus (P) on the decomposition of suspended cellulose.

Decomposition rates were fastest on the epiphyte mats, intermediate in the removal treatment and slowest in the controls. Phosphorus addition increased decomposition rates in the fertilization experiment, and greater P concentrations, along with some micronutrients, were associated with increased rates of decomposition on the epiphyte mats and in the removal treatments. Locally dispersed fungi dominated the wood stick communities, indicating that fungal dispersal is limited in the canopy, and fungal saprotrophs were associated with increased rates of decomposition on the epiphytes.

These experiments show that slowed decomposition above the forest floor is caused, in part, by separation from soil resources. Moreover, our findings provide support for both the nutrient limitation and dispersal limitation hypotheses and indicate that mechanisms regulating canopy‐level decomposition differ from those documented on the forest floor. This demonstrates the need for a holistic approach to decomposition that considers the vertical position of necromass as it decomposes. Further experimentation is necessary to quantify interactions between community assembly processes, nutrient availability, substrate traits, and microclimate.

A freePlain Language Summarycan be found within the Supporting Information of this article.

 
more » « less
NSF-PAR ID:
10459700
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
33
Issue:
12
ISSN:
0269-8463
Page Range / eLocation ID:
p. 2417-2429
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Epiphytes are characterized by their ability to survive without a root connection to the ground, but many basic life‐history traits and ecological trade‐offs of this unique aerial growth habit remain largely uncharacterized. Mortality causes are still not well understood, but falling from the host tree has been suggested as a leading cause of epiphyte mortality and community dynamics. Little empirical evidence exists forwhyepiphytes do not survive when forced to become terrestrial, and few studies exist that transplant epiphytes between high‐ and low‐forest strata to test trade‐offs between thriving in canopy environments and survival in the forest understorey.

    Here, we experimentally test two hypotheses regarding the drivers of epiphyte mortality in a cloud forest of central Panama. We test whether simple contact with terrestrial soil is deleterious to epiphytes, preliminarily testing the epiphyte enemy escape hypothesis, and test the vertical niche differentiation hypothesis, wherein epiphytes are specifically adapted for microsites throughout the vertical forest strata. By monitoring survival, leaf loss and health status of 270 transplanted epiphytes for a year and a half, we pinpoint the extent to which soil contact and height of origin regulate epiphyte performance.

    We found that contact with terrestrial soil itself was detrimental to epiphytes in situ, providing some of the first empirical data to explain why falling onto the ground, versus falling into the understorey, is particularly fatal to epiphytes. However, we also found that mortality rates vary substantially among taxonomic groups and among epiphytes that originally came from different height strata.

    Synthesis. Plants that are adapted for the canopy experience a trade‐off with higher mortality when in contact with terrestrial soil. Follow‐up studies should explore the role of terrestrial soil microbes and physiological constraints as potential drivers of decreased grounded epiphyte survival.

     
    more » « less
  2. Abstract

    Fungi represent a rapidly cycling pool of carbon (C) and nitrogen (N) in soils. Understanding of how this pool impacts soil nutrient availability and organic matter fluxes is hindered by uncertainty regarding the dynamics and drivers of fungal necromass decomposition.

    Here we assessed the generality of common models for predicting mass loss during fungal necromass decomposition and linked the resulting parameters to necromass substrate chemistry. We decomposed 28 different types of fungal necromass in laboratory microcosms over a 90‐day period, measuring mass loss on all types, and N release on a subset of types. We characterised the initial chemistry of each necromass type using: (a) fibre analysis methods commonly used for plant tissues, (b) initial melanin and nitrogen (N) concentrations and (c) Fourier transform infrared (FTIR) spectroscopy to assess the presence of bonds associated with common biomolecules.

    We found universal support for an asymptotic model of decomposition, which assumes that fungal necromass consists of an exponentially decomposing ‘fast’ pool, and a ‘slow’ pool that decomposes at a rate approaching zero. The strongest predictor of the fast pool decay rate (k) was the proportion of cell soluble components, though initial N concentration also predictedk, albeit more weakly. The size of the slow pool was best predicted by the acid non‐hydrolysable fraction, which was positively correlated with melanin‐associated aromatics. Nitrogen dynamics varied by necromass type, ranging from net N release to net immobilisation. The maximum quantity of N immobilised was inversely related to cell soluble contents andk, as positively related to FTIR spectra associated with cell wall polysaccharides.

    Collectively, our results indicate that the decomposition of fungal necromass in soils can be described as having two distinct stages that are driven by different components of substrate C chemistry, with implications for rates of N availability and organic matter accumulation in soils.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.

    We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.

    We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.

    Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.

    Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering.

     
    more » « less
  4. ABSTRACT

    Understanding the post-senescent fate of fungal mycelium is critical to accurately quantifying forest carbon and nutrient cycling, but how this organic matter source decomposes in wood remains poorly studied. In this study, we compared the decomposition of dead fungal biomass (a.k.a. necromass) of two species, Mortierella elongata and Meliniomyces bicolor, in paired wood and soil plots in a boreal forest in northern Minnesota, USA. Mass loss was quantified at four time points over an 8-week incubation and the richness and composition of the fungal communities colonizing fungal necromass were characterized using high-throughput sequencing. We found that the structure of fungal decomposer communities in wood and soil differed, but, in both habitats, there was relatively rapid decay (∼30% remaining after 56 days). Mass loss was significantly faster in soil and for high-quality (i.e. high nitrogen and low melanin) fungal necromass. In both habitats, there was a clear trajectory of early colonization by opportunistic fungal taxa followed by colonization of fungi with greater enzymatic capacities to degrade more recalcitrant compounds, including white-rot and ectomycorrhizal fungi. Collectively, our results indicate that patterns emerging regarding substrate quality effects on fungal necromass decomposition in soil and leaf litter can be largely extended to fungal necromass decomposition in wood.

     
    more » « less
  5. null (Ed.)
    Purpose A better knowledge of how deadwood decomposes is critical for accurately characterizing carbon and nutrient cycling in forests. Fungi dominate this decomposition process, but we still have limited understanding of fungal community structuring that ultimately controls the fate of wood decomposition. This is particularly true in tropical ecosystems. To address this knowledge gap, our study capitalized on an extreme storm event that caused a large and synchronized input of deadwood to the forest floor. Methods Here we report data for the first year of wood decomposition of trees in a Puerto Rican dry forest for nine tree species that were snapped by Hurricane Maria in 2017. We measured wood properties and the associated fungal communities after 12 months of decomposition and compared them with initial wood properties and stem-inhabiting fungal communities to identify the best predictors of wood decomposition rates and chemical changes. Results Changes in wood chemistry were primarily explained by rapid xylan losses, the main hemicellulose component for the studied tree species. Fungal communities were dominated by saprotrophic and plant pathogenic fungi and showed moderate changes over time. The initial relative abundances and ratios of different fungal functional guilds were significant predictors of both xylan and glucan losses, with plant pathogenic fungi accelerating cellulose and hemicellulose decomposition rates compared to saprotrophs. Conclusion Our results confirm that fungi present at the time of treefall are strong drivers of wood decomposition and suggest that plant pathogenic fungi might act as efficient early decomposers of hemicellulose in dry tropical forests. 
    more » « less