We investigate sequential processes underlying the initial development of in‐cloud lightning flashes in the form of initial breakdown pulses (IBPs) between 7.4 and 9.0 km altitudes, using a 30–250 MHz VHF interferometer. When resolved, IBPs exhibit typical stepped leader features but are notably extensive (>500 m) and infrequent (∼1 millisecond intervals). Particularly, we observed four distinct phases within an IBP stepping cycle: the emergence of VHF sources forming edge structures at previous streamer zone edges (interpreted as space stem/leader development), the fast propagation of VHF along the edge structure (interpreted as the main leader connecting the space leader), the fast extension of VHF beyond the edge structure (interpreted as fast breakdown), and a decaying corona fan. These measurements illustrate clearly the processes involved in the initial development of in‐cloud lightning flashes, evidence the conducting main leader forming, and provide insights into other processes known to occur simultaneously, such as terrestrial gamma ray flashes.
Recent measurements of narrow bipolar lightning events (NBEs) by very high frequency (VHF) radio interferometer have resolved the dynamic development of this special lightning process with submicrosecond time resolution, and showed that the fast positive breakdown (FPB) process is responsible for initiating at least some lightning flashes. In this study, with a newly built and deployed VHF interferometer system, we analyzed 31 intracloud lightning flash initiation events during three thunderstorms at short range from the interferometer. These events separate into two distinct classes that can be identified based on the time scale and the occurrence contexts of the first detectable VHF emissions from the flash. One class has features completely consistent with previously reported FPB events and is associated with continuous VHF emissions of 10–20 μs duration. Downward motion of the FPB region centroid merged continuously into the development of the subsequent upward negative leaders. But the majority of the lightning flashes analyzed began with ultrashort, submicrosecond duration, isolated pulses of VHF emission with no identifiable FPB signatures between these pulses and the leader development. These short VHF pulses begin typically a few hundred microseconds before the upward leader developes and are located at the same position where the leader eventually begins. We suggest that the FPB process is responsible for initiating some but not all lightning flashes, and the extremely short pulse‐like VHF emissions play a role in initiating those flashes without any FPB process.
more » « less- PAR ID:
- 10459916
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 124
- Issue:
- 6
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- p. 2994-3004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Using a 30–250 MHz VHF interferometer, we observed a previously unreported mode of initial lightning development inside thunderclouds. This mode is defined by continuous VHF radiation spanning several km within the first few milliseconds of lightning initiation. Following flash initiation through fast positive breakdown at high altitudes above 9 km, the VHF radiation front of upward negative streamers ascended continuously at a speed of ∼1.0 × 106 m/s, forming a continuous initial breakdown burst (CIBB) about 2 km in length. For the two CIBBs analyzed, the long and narrow CIBB channel was traversed by dart leaders that occurred later in the flash, indicating that the CIBB channel belongs to what becomes the main conducting leader channel. In contrast to classic initial breakdown pulses (IBPs) with sub‐pulses superimposed on the rising edge, CIBBs produced a series of discrete, narrow LF pulses (<10 μs) with an average time interval of 0.20 and 0.14 ms, respectively. We speculate that a CIBB is a continuously developing negative streamer system in the high electric field region at high altitudes, with connections of internal plasma channels producing LF pulses. These results have implications for physical conditions conducive to the formation of a long and continuous negative streamer system.
-
Abstract A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.
-
Abstract The production mechanism for terrestrial gamma ray flashes (TGFs) is not entirely understood, and details of the corresponding lightning activity and thunderstorm charge structure have yet to be fully characterized. Here we examine sub‐microsecond VHF (14–88 MHz) radio interferometer observations of a 247‐kA peak‐current EIP, or energetic in‐cloud pulse, a reliable radio signature of a subset of TGFs. The EIP consisted of three high‐amplitude sferic pulses lasting
≃ 60μ s in total, which peaked during the second (main) pulse. The EIP occurred during a normal‐polarity intracloud lightning flash that was highly unusual, in that the initial upward negative leader was particularly fast propagating and discharged a highly concentrated region of upper‐positive storm charge. The flash was initiated by a high‐power (46 kW) narrow bipolar event (NBE), and the EIP occurred about 3 ms later after≃ 3 km upward flash development. The EIP was preceded≃ 200μ s by a fast6 × 106 m/s upward negative breakdown and immediately preceded and accompanied by repeated sequences of fast (107 –108 m/s) downward then upward streamer events each lasting 10 to 20μ s, which repeatedly discharged a large volume of positive charge. Although the repeated streamer sequences appeared to be a characteristic feature of the EIP and were presumably involved in initiating it, the EIP sferic evolved independently of VHF‐producing activity, supporting the idea that the sferic was produced by relativistic discharge currents. Moreover, the relativistic currents during the main sferic pulse initiated a strong NBE‐like event comparable in VHF power (115 kW) to the highest‐power NBEs. -
Abstract When the electric field below a thunderstorm or other electrified cloud is around 10 kV/m, it is sometimes possible to initiate (“trigger”) an upward‐propagating lightning‐leader by launching a rocket that uncoils a wire from the ground. The triggered leader propagates upward from the tip of the wire lifted by the rocket. When the channel is hot enough, a flash is visible. Triggering is common when the leader carries positive charge, but not when it carries negative charge. This article is about four flashes consisting of triggered negative leaders that branched into low‐altitude regions of positive cloud charge over Langmuir Laboratory in central New Mexico. Measurements of current and the locations of leader channels are available for three of the four flashes. Some current pulses at the ground for Flash 2 originated at negative leader steps more than 3 km away, which is a greater distance than has been reported from video measurements. Flashes 3 and 4 propagated only into thunderstorm lower positive charge, and the average lightning‐charge densities inside the volumes occupied by these two flashes are remarkably close. Our best estimate of density for Flashes 3 and 4 lies between −4.2 and −1.8 C/km3, which is compatible with the large spread in cloud‐charge densities derived from instruments carried on airplanes or balloons into low positive regions in thunderstorms.