skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Resolution Observations of Subsurface Fronts and Alongshore Bottom Temperature Variability Over the Inner Shelf
Abstract Circulation patterns over the inner continental shelf can be spatially complex and highly variable in time. However, few studies have examined alongshore variability over short scales of kilometers or less. To observe inner‐shelf bottom temperatures with high (5‐m) horizontal resolution, a fiber‐optic distributed temperature sensing system was deployed along a 5‐km‐long portion of the 15‐m isobath within a larger‐scale mooring array south of Martha's Vineyard, MA. Over the span of 4 months, variability at a range of scales was observed along the cable over time periods of less than a day. Notably, rapid cooling events propagated down the cable away from a tidal mixing front, showing that propagating fronts on the inner shelf can be generated locally near shallow bathymetric features in addition to remote offshore locations. Propagation velocities of observed fronts were influenced by background tidal currents in the alongshore component and show a weak correlation with theoretical gravity current speeds in the cross‐shore component. These events provide a source of cold, dense water into the inner shelf. However, differences in the magnitude and frequency of cooling events at sites separated by a few kilometers in the alongshore direction suggest that the characteristics of small‐scale variability can vary dramatically and can result in differential fluxes of water, heat, and other tracers. Thus, under stratified conditions, prolonged subsurface observations with high spatial and temporal resolution are needed to characterize the implications of three‐dimensional circulation patterns on exchange, especially in regions where the coastline and isobaths are not straight.  more » « less
Award ID(s):
1832109 1832170
PAR ID:
10459939
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
1
ISSN:
2169-9275
Page Range / eLocation ID:
p. 593-614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The variability and drivers of the cross-shelf exchanges between the Southwestern Atlantic shelf and the open ocean from 30 to 40°S are analyzed using a high-resolution ocean model reanalysis at daily resolution. The model's performance was first evaluated using altimetry data, and independent mooring and hydrographic data collected in the study area. Model transports are in overall good agreement with all other estimates. The record-mean (1993–2018) cross-shore transport is offshore, 2.09 ± 1.60 Sv. 73% of the shelf-open ocean exchange occurs in the vicinity of Brazil-Malvinas Confluence (~38°S) and 20% near 32°S. This outflow is mostly contributed by northward alongshore transport through 40°S (63%) and the remaining by southward transport through 30°S (37%). The cross-shore flow presents weak seasonal variations, with a maximum in austral summer, and high variability at subannual and weekly time scales. The latter is mainly associated with abrupt wind changes generated by synoptic atmospheric systems. Alongshore wind variations set up sea-level changes in the inner shelf which in turn drive large anomalies in the associated geostrophic alongshore flow. The difference in inner shelf sea-level anomalies at 30 and 40°S is a good indicator of cross-shelf exchange at seasonal and shorter time scales. Episodes of extreme offshore transport that reach up to 9.45 Sv and last about 2 days are driven by convergence of these alongshore flows over the shelf. Large exports of shelf waters lead to freshening of the upper open ocean as revealed by in-situ and satellite observations. In contrast, onshore extreme events drive open ocean water intrusions of up to 6.53 Sv and last <4 days. These inflows, particularly the subtropical waters from the Brazil Current, induce a substantial salinification of the outer shelf. 
    more » « less
  2. Abstract A remarkably consistent Lagrangian upwelling circulation at monthly and longer time scales is observed in a 17-yr time series of current profiles in 12 m of water on the southern New England inner shelf. The upwelling circulation is strongest in summer, with a current magnitude of ∼1 cm s −1 , which flushes the inner shelf in ∼2.5 days. The average winter upwelling circulation is about one-half of the average summer upwelling circulation, but with larger month-to-month variations driven, in part, by cross-shelf wind stresses. The persistent upwelling circulation is not wind-driven; it is driven by a cross-shelf buoyancy force associated with less-dense water near the coast. The cross-shelf density gradient is primarily due to temperature in summer, when strong surface heating warms shallower nearshore water more than deeper offshore water, and to salinity in winter, caused by fresher water near the coast. In the absence of turbulent stresses, the cross-shelf density gradient would be in a geostrophic, thermal-wind balance with the vertical shear in the along-shelf current. However, turbulent stresses over the inner shelf attributable to strong tidal currents and wind stress cause a partial breakdown of the thermal-wind balance that releases the buoyancy force, which drives the observed upwelling circulation. The presence of a cross-shelf density gradient has a profound impact on exchange across this inner shelf. Many inner shelves are characterized by turbulent stresses and cross-shelf density gradients with lighter water near the coast, suggesting turbulent thermal-wind-driven coastal upwelling may be a broadly important cross-shelf exchange mechanism. Significance Statement A remarkably consistent upwelling circulation at monthly time scales is observed in a 17-yr time series of current profiles in shallow water off southern New England. This is not the traditional wind-driven coastal upwelling; instead, it is forced by cross-shelf buoyancy (density) gradients, released by turbulent stresses in shallow water. The persistent upwelling circulation is strongest in summer, when wind and wave forcing are weak, and flushes the inner portion of the continental shelf in a few days. Consequently, this buoyancy-driven coastal upwelling is important for cooling the inner shelf and provides a reliable mechanism for cross-shelf exchange. Many inner shelves are characterized by cross-shelf density gradients and turbulent stresses, suggesting this may be a broadly important cross-shelf exchange mechanism. 
    more » « less
  3. Abstract Semidiurnal variability of alongshore currents on the inner shelf of the Southern California Bight is investigated using a 7‐year velocity and pressure time series. Analysis reveals that the ‐frequency alongshore current varies significantly over spatial scales of O(10 km), inconsistent with the expected progressive surface tide. Instead, the observed variability is attributed to the influence of a northward‐propagating, superinertial baroclinic coastal trapped wave (CTW) that generates a quasi‐barotropic flow, defined as the portion of the depth‐averaged alongshore current that is not directly driven by the surface tide. A superinertial CTW model, forced by realistic bathymetry and stratification conditions, suggests that the dominant mode of variability is likely a mode‐1 CTW with a wavelength of approximately 40 km. The observations and model also reveal that seasonal changes in stratification modulate the wavelength and phase speed of the CTW, leading to a seasonal pattern in the phasing of the quasi‐barotropic alongshore flow. These findings provide a new perspective on the complex dynamics governing semidiurnal variability of alongshore currents on the inner shelf of the Southern California Bight and highlight the importance of considering the effects of superinertial CTWs when examining coastal dynamics. 
    more » « less
  4. Abstract Realistic simulation of nearshore (from the shoreline to approximately 10‐km offshore) Lagrangian material transport is required for physical, biological, and ecological investigations of the coastal ocean. Recently, high‐resolution simulations of the coastal ocean have revealed a shelf populated with small‐scale, rapidly evolving currents that arise at resolutions100 m. However, many historical and recent investigations of coastal connectivity utilize circulation models with ≈1‐km resolution. Here we show a resolution sensitivity to simulated Lagrangian transport and coastal connectivity with a hierarchy of Regional Oceanic Modeling System simulations of the Santa Barbara Channel at Δx= 1, 0.3, 0.1, and 0.036 km. At higher resolution ( 100 m), rapid alongshore and vertical transport occurs in regions less than 1 km from the shoreline due to submesoscale shelf currents that open up new transport pathways on the shelf: submesoscale fronts and filaments, topographic wakes, and narrow alongshore jets. Shallow‐water fronts and filaments induce early time downwelling and subsequent dispersal at depth of surface material; this is not captured at coarser resolution (Δx= 1 km). Differences in three‐dimensional and two‐dimensional transport are explored in a higher‐resolution simulation: In general, three‐dimensional trajectories are more dispersive than two‐dimensional, due to a separation in their respective trajectories. 
    more » « less
  5. null (Ed.)
    Abstract Ocean currents along the southeast Greenland coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, freshwater from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic Ocean water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with coastal trapped waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find coastal trapped waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 and 5–18 days—that are consistent with a combination of mode-I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18-day shelf waves, whereas the 1–3-day variability is linked to high wind speeds over Sermilik Deep. 
    more » « less