Abstract Numerous eddies in the coastal ocean may experience distortion due to interactions with the ambient flow. Here we investigate how coastal submesoscale eddy distortion affects the cross‐shore and vertical tracer transport using a high‐resolution, wave‐current coupled model in the La Jolla Canyon region within the Southern California Bight. Model dye is released representing freshwater discharges. Model validations show that the coupled model has weaker stratification and weaker currents. Analyses primarily focus on an eddy‐induced cross‐shore dye transport event. The results show that, the coastal eddy is squeezed in the alongshore direction and extends in the cross‐shore direction, driving cross‐shore dye transport. Along a mid‐shelf boundary, the total cross‐shore transport is found to be dominated by the along‐boundary perturbation flow, which is linked to the eddy distortion. In addition, this coastal eddy also possesses vigorous vertical motions. The vertical velocity is more negative on the eddy northern side, favoring local dye subduction. This N‐S vertical velocity asymmetry may largely be induced by the topographic beta effect and the weaker modeled stratification may strengthen this effect. Overall, coastal eddy distortion contributes to the offshore tracer transport and induces spatially non‐uniform vertical dye flux.
more »
« less
This content will become publicly available on May 1, 2026
Semidiurnal Inner Shelf Flow in the Southern California Bight
Abstract Semidiurnal variability of alongshore currents on the inner shelf of the Southern California Bight is investigated using a 7‐year velocity and pressure time series. Analysis reveals that the ‐frequency alongshore current varies significantly over spatial scales of O(10 km), inconsistent with the expected progressive surface tide. Instead, the observed variability is attributed to the influence of a northward‐propagating, superinertial baroclinic coastal trapped wave (CTW) that generates a quasi‐barotropic flow, defined as the portion of the depth‐averaged alongshore current that is not directly driven by the surface tide. A superinertial CTW model, forced by realistic bathymetry and stratification conditions, suggests that the dominant mode of variability is likely a mode‐1 CTW with a wavelength of approximately 40 km. The observations and model also reveal that seasonal changes in stratification modulate the wavelength and phase speed of the CTW, leading to a seasonal pattern in the phasing of the quasi‐barotropic alongshore flow. These findings provide a new perspective on the complex dynamics governing semidiurnal variability of alongshore currents on the inner shelf of the Southern California Bight and highlight the importance of considering the effects of superinertial CTWs when examining coastal dynamics.
more »
« less
- Award ID(s):
- 2220439
- PAR ID:
- 10630997
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 130
- Issue:
- 5
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Theoretical understanding of the upward vertical motion into the surface layer during coastal upwelling is often based on steady linear Ekman dynamics. In steady linear theory, the divergence of surface transport that leads to upwelling is associated with either overlap of the frictional boundary layers over the inner shelf or wind stress curl farther offshore. However, the alongshore current associated with a coastal upwelling front is associated with relative vorticity which modifies surface transport. A new nonlinear theory shows that, under spatially uniform wind forcing, the fraction of Ekman transport upwelled over the inner shelf tends to decrease with increasing slope Burger numberSas the baroclinic alongshore jet strengthens and cyclonic vorticity increases. Similar patterns are shown in a set of idealized numerical experiments. Unsteadiness in the alongshore flow, neglected in the theory, strongly influences the cross-shelf distribution of upwelling in the numerical model at locations offshore of the inner shelf and near the core of the upwelling jet. The theory and numerical modeling are extended to explore the effect of a large-scale alongshore pressure gradient force (PGF) that forms in response to alongshore variations in wind stress. At highS, a baroclinic PGF is associated with a shallow onshore return flow, but the fraction of modeled upwelling that occurs over the inner shelf is not strongly affected. The results emphasize that the strength and location of the alongshore jet strongly influence the cross-shelf distribution of coastal upwelling in the presence of stratification and a sloping bottom. Significance StatementWind-driven coastal upwelling is important for supplying nutrients to phytoplankton at the base of marine ecosystems. This study uses simple models to investigate factors that determine where upwelling of water into the surface layer occurs when wind blows along the coastline. With a larger difference in density between the surface and bottom layers, a steeply sloping seafloor, and at latitudes closer to the equator, the upwelling region shifts farther offshore because of the strength and location of faster ocean currents that flow along the coastline.more » « less
-
Abstract The characteristics and dynamics of depth-average along-shelf currents at monthly and longer time scales are examined using 17 years of observations from the Martha’s Vineyard Coastal Observatory on the southern New England inner shelf. Monthly averages of the depth-averaged along-shelf current are almost always westward, with the largest interannual variability in winter. There is a consistent annual cycle with westward currents of 5 cm s −1 in summer decreasing to 1–2 cm s −1 in winter. Both the annual cycle and interannual variability in the depth-average along-shelf current are predominantly driven by the along-shelf wind stress. In the absence of wind forcing, there is a westward flow of ∼5 cm s −1 throughout the year. At monthly time scales, the depth-average along-shelf momentum balance is primarily between the wind stress, surface gravity wave–enhanced bottom stress, and an opposing pressure gradient that sets up along the southern New England shelf in response to the wind. Surface gravity wave enhancement of bottom stress is substantial over the inner shelf and is essential to accurately estimating the bottom stress variation across the inner shelf. Significance Statement Seventeen years of observations from the Martha’s Vineyard Coastal Observatory on the inner continental shelf of southern New England reveal that the depth-average along-shelf current is almost always westward and stronger in summer than in winter. Both the annual cycle and variations around the annual cycle are primarily driven by the along-shelf wind stress. The wind stress is opposed by a pressure gradient that sets up along the southern New England shelf and a surface gravity wave–enhanced bottom stress. The surface gravity wave enhancement of bottom stress is substantial in less than 30 m of water and is essential in determining the variation of the along-shelf current across the inner shelf.more » « less
-
Abstract Rip currents are generated by surfzone wave breaking and are ejected offshore inducing inner-shelf flow spatial variability (eddies). However, surfzone effects on the inner-shelf flow spatial variability have not been studied in realistic models that include both shelf and surfzone processes. Here, these effects are diagnosed with two nearly identical twin realistic simulations of the San Diego Bight over summer to fall where one simulation includes surface gravity waves (WW) and the other that does not (NW). The simulations include tides, weak to moderate winds, internal waves, submesoscale processes, and have surfzone width L sz of 96(±41) m (≈ 1 m significant wave height). Flow spatial variability metrics, alongshore root mean square vorticity, divergence, and eddy cross-shore velocity, are analyzed in a L sz normalized cross-shore coordinate. At the surface, the metrics are consistently (> 70%) elevated in the WW run relative to NW out to 5 L sz offshore. At 4 L sz offshore, WW metrics are enhanced over the entire water column. In a fixed coordinate appropriate for eddy transport, the eddy cross-shore velocity squared correlation betweenWWand NW runs is < 0.5 out to 1.2 km offshore or 12 time-averaged L sz . The results indicate that the eddy tracer ( e.g. , larvae) transport and dispersion across the inner-shelf will be significantly different in the WW and NW runs. The WW model neglects specific surfzone vorticity generation mechanisms. Thus, these inner-shelf impacts are likely underestimated. In other regions with larger waves, impacts will extend farther offshore.more » « less
-
Abstract The generation of internal tides at coastal margins is an important mechanism for the loss of energy from the barotropic tide. Although some previous studies attempted to quantify energy loss from the barotropic tides into the deep ocean, global estimates are complicated by the coastal geometry and spatially and temporally variable stratification. Here, we explore the effects of supercritical, finite amplitude bottom topography, which is difficult to solve analytically. We conduct a suite of 2D linear numerical simulations of the barotropic tide interacting with a uniform alongshore coastal shelf, representing the tidal forcing by a body force derived from the vertical displacement of the isopycnals by the gravest coastal trapped wave (of which a Kelvin wave is a close approximation). We explore the effects of latitude, topographic parameters, and nonuniform stratification on the baroclinic tidal energy flux propagating into the deep ocean away from the shelf. By varying the pycnocline depth and thickness, we extend previous studies of shallow and infinitesimally thin pycnoclines to include deep permanent pycnoclines. We find that scaling laws previously derived in terms of continental shelf width and depth for shallow and thin pycnoclines generally hold for the deeper and thicker pycnoclines considered in this study. We also find that baroclinic tidal energy flux is more sensitive to topographic than stratification parameters. Interestingly, we find that the slope of the shelf itself is an important parameter but not the width of the continental slope in the case of these steep topographies. Significance StatementThe objective of this study is to better understand how vertical density stratification, which can vary seasonally in the ocean, affects the interaction of tides with steep coastal topography and the generation of waves that travel away from the coast in the ocean interior. These waves in the interior can travel over long distances, carrying energy offshore into the deep ocean. Our results suggest that the amount of energy in these internal waves is more sensitive to changes in topography and latitude than to the vertical density profile. The scaling laws found in this study suggest which parameters are important for calculating global estimates of the energy lost from the tide to the ocean interior at the coastal margins.more » « less
An official website of the United States government
