skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge 2 Sb 2 Te 5
Abstract Controlling crystallization kinetics is key to overcome the temperature–time dilemma in phase change materials employed for data storage. While the amorphous phase must be preserved for more than 10 years at slightly above room temperature to ensure data integrity, it has to crystallize on a timescale of several nanoseconds following a moderate temperature increase to near 2/3Tmto compete with other memory devices such as dynamic random access memory (DRAM). Here, a calorimetric demonstration that this striking variation in kinetics involves crystallization occurring either from the glassy or from the undercooled liquid state is provided. Measurements of crystallization kinetics of Ge2Sb2Te5with heating rates spanning over six orders of magnitude reveal a fourfold decrease in Kissinger activation energy for crystallization upon the glass transition. This enables rapid crystallization above the glass transition temperatureTg. Moreover, highly unusual for glass‐forming systems, crystallization at conventional heating rates is observed more than 50 °C belowTg, where the atomic mobility should be vanishingly small.  more » « less
Award ID(s):
1640860 1832817
PAR ID:
10460174
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
39
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The preparation of 0.58 Li2S + 0.315 SiS2+ 0.105 LiPO3glass, and the impacts of polysulfide and P1Pdefect structure impurities on the glass transition temperature (Tg), crystallization temperature (Tc), working range (ΔT≡ Tc‐ Tg), fragility index, and the Raman spectra were evaluated using statistical analysis. In this study, 33 samples of this glass composition were synthesized through melt‐quenching. Thermal analysis was conducted to determine the glass transition temperature, crystallization temperature, working range, and fragility index through differential scanning calorimetry. The quantity of the impurities described above was determined through Raman spectroscopy peak analysis. Elemental sulfur was doped into a glass to quantify the wt% sulfur content in the glasses. Linear regression analysis was conducted to determine the impact of polysulfide impurities and P1Pdefect impurities on the thermal properties. Polysulfide impurities were found to decrease theTgat rate of nearly 12°C per 1 wt% increase in sulfur concentration. The sulfur concentration does not have a statistically significant impact on the other properties (α = 0.05). The P1Pdefect structure appears to decrease the resistance to crystallization of the glass by measurably decreasing the working range of the glasses, but further study is necessary to fully quantify and determine this. 
    more » « less
  2. Abstract Optoelectronics are crucial for developing energy‐efficient chip technology, with phase‐change materials (PCMs) emerging as promising candidates for reconfigurable components in photonic integrated circuits, such as nonvolatile phase shifters. Antimony sulfide (Sb2S3) stands out due to its low optical loss and considerable phase‐shifting properties, along with the non‐volatility of both phases. This study demonstrates that the crystallization kinetics of Sb2S3can be switched from growth‐driven to nucleation‐driven by altering the sample dimension from bulk to film. This tuning of the crystallization process is critical for optical switching applications requiring control over partial crystallization. Calorimetric measurements with heating rates spanning over six orders of magnitude, reveal that, unlike conventional PCMs that crystallize below the glass transition, Sb2S3exhibits a measurable glass transition prior to crystallization from the undercooled liquid (UCL) phase. The investigation of isothermal crystallization kinetics provides insights into nucleation rates and crystal growth velocities while confirming the shift to nucleation‐driven behavior at reduced film thicknesses—an essential aspect for effective device engineering. A fundamental difference in chemical bonding mechanisms was identified between Sb2S3, which exhibits covalent bonding in both material phases, and other PCMs, such as GeTe and Ge2Sb2Te5, which demonstrate pronounced bonding alterations upon crystallization. 
    more » « less
  3. Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature T g exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting T g value also rationalizes the presence of the pre- T g relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub- T g fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing). 
    more » « less
  4. A molten metal is an atomic liquid that lacks directional bonding and is free from chemical ordering effects. Experimentally, liquid metals can be undercooled by up to ∼20% of their melting temperature but crystallize rapidly in subnanosecond time scales at deeper undercooling. To address this limited metastability with respect to crystallization, we employed molecular dynamics simulations to study the thermodynamics and kinetics of the glass transition and crystallization in deeply undercooled liquid Ag. We present direct evidence that undercooled liquid Ag undergoes a first-order configurational freezing transition from the high-temperature homogeneous disordered liquid phase (L) to a metastable, heterogeneous, configura-tionally ordered state that displays elastic rigidity with a persistent and finite shear modulus, μ. We designate this ordered state as the G-phase and conclude it is a metastable non-crystalline phase. We show that the L−G transition occurs by nucleation of the G-phase from the L-phase. Both te L- and G-phases are metastable because both ultimately crystallize. The observed first-order transition is reversible: the G-phase displays a first-order melting transition to the L-phase at a coexistence temperature, TG,M. We develop a thermodynamic description of the two phases and their coexistence boundary. 
    more » « less
  5. Abstract Ferro-rotational magnet RbFe(SO4)2has attracted attention for its stable ferro-rotational phase and electric-field-controlled magnetic chirality. This work presents the multiferroic properties andH–Tphase diagram of RbFe(SO4)2, which have been underexplored. Our measurements of magnetic susceptibility, ferroelectric polarization, and dielectric constant under various magnetic fields reveal four distinct phases: (I) a ferroelectric and helical magnetic phase below 4 K and 6 T, (II) a paraelectric and collinear magnetic phase below 4 K and above 6 T, (III) a paraelectric and non-collinear magnetic phase below 4 K and above 9 T, and (IV) a paraelectric and paramagnetic above 4 K. This study clarifies the multiferroic behavior andH–Tphase diagram of RbFe(SO4)2, providing valuable insights into ferro-rotational magnets. 
    more » « less