Abstract ObjectivesCortical bone geometry is commonly used to investigate biomechanical properties of primate mandibles. However, the ontogeny of these properties is less understood. Here we investigate changes in cortical bone cross‐sectional properties throughout capuchin ontogeny and compare captive versus wild, semi‐provisioned groups. Tufted capuchins (Sapajusspp.) are known to consume relatively hard/tough foods, while untufted capuchins (Cebusspp.) exploit less mechanically challenging foods. Previous research indicates dietary differences are present early in development and adultSapajusmandibles can resist higher bending/shear/torsional loads. Materials and methodsThis study utilized microCT scans of 22Cebusand 45Sapajusfrom early infancy to adulthood from three sample populations: one captiveCebus, one captiveSapajus, and one semi‐provisioned, free‐rangingSapajus. Mandibular cross‐sectional properties were calculated at the symphysis, P3, and M1. If the tooth had not erupted, its position within the crypt was used. A series of one‐way ANOVAs were performed to assess differences between and within the sample populations. ResultsMandible robusticity increases across ontogeny for all three sample populations.Sapajuswere better able to withstand bending and torsional loading even early in ontogeny, but no difference in shear resistance was found. Semi‐provisioned, free‐rangingSapajustend to show increased abilities to resist bending and torsional loading but not shear loading compared to captiveSapajus. DiscussionThis study helps advance our understanding of the primate masticatory system development and opens the door for further studies into adaptive plasticity in shaping the masticatory apparatus of capuchins and differences in captive versus free‐ranging sample populations. 
                        more » 
                        « less   
                    
                            
                            Anatomy and Ontogeny of the Mandibular Symphysis in Alligator mississippiensis
                        
                    
    
            ABSTRACT Crocodylians evolved some of the most characteristic skulls of the animal kingdom with specializations for semiaquatic and ambush lifestyles, resulting in a feeding apparatus capable of tolerating high biomechanical loads and bite forces and a head with a derived sense of trigeminal‐nerve‐mediated touch. The mandibular symphysis accommodates these specializations being both at the end of a biomechanical lever and an antenna for sensation. Little is known about the anatomy of the crocodylian mandibular symphysis, hampering our understanding of form, function, and evolution of the joint in extant and extinct lineages. We explore mandibular symphysis anatomy of an ontogenetic series ofAlligator mississippiensisusing imaging, histology, and whole mount methods. Complex sutural ligaments emanating about a midline‐fused Meckel's cartilage bridge the symphysis. These tissues organize during days 37–42 ofin ovodevelopment. However, interdigitations do not manifest until after hatching. These soft tissues leave a hub and spoke‐like bony morphology of the symphyseal plate, which never fuses. Interdigitation morphology varies within the symphysis suggesting differential loading about the joint. Neurovascular canals extend throughout the mandibles to alveoli, integument, and bone adjacent to the symphysis. These features suggest theAlligatormandibular symphysis offers compliance in an otherwise rigid skull. We hypothesize a fused Meckel's cartilage offers stiffness in hatchling mandibles prior to the development of organized sutural ligaments and mineralized bone while offering a scaffold for somatic growth. The porosity of the dentaries due to neurovascular tissues likely allows transmission of sensory and proprioceptive information from the surroundings and the loaded symphysis. Anat Rec, 302:1696–1708, 2019. © 2019 American Association for Anatomy 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1631684
- PAR ID:
- 10460254
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- The Anatomical Record
- Volume:
- 302
- Issue:
- 10
- ISSN:
- 1932-8486
- Format(s):
- Medium: X Size: p. 1696-1708
- Size(s):
- p. 1696-1708
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropodAllosaurus fragilisand the living crocodylianAlligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi‐arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa.more » « less
- 
            ObjectiveTo elucidate the role of decorin, a small leucine‐rich proteoglycan, in the degradation of cartilage matrix during the progression of post‐traumatic osteoarthritis (OA). MethodsThree‐month–old decorin‐null (Dcn−/−) and inducible decorin‐knockout (DcniKO) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post‐traumaticOA. TheOAphenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy–nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro–computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild‐type and Dcn−/−mice were stimulated with the inflammatory cytokine interleukin‐1β (IL‐1β) in vitro (n = 6 mice per group). The resulting chondrocyte response toIL‐1β and release ofsGAGs were quantified. ResultsIn both Dcn−/−and DcniKOmice, the absence of decorin resulted in acceleratedsGAGloss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P< 0.05). Also, Dcn−/−mice developed more salient osteophytes, illustrating more severeOA. In cartilage explants treated withIL‐1β, loss of decorin did not alter the expression of either anabolic or catabolic genes. However, a greater proportion ofsGAGs was released to the media from Dcn−/−mouse explants, in both live and devitalized conditions (P< 0.05). ConclusionIn post‐traumaticOA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration.more » « less
- 
            Abstract Bones of the skull are traditionally categorized as derived from either endochondral or intramembranous bone. In our previous work, we have observed the interaction of different tissue types in growth of the skull. We find the dichotomy of intramembranous and endochondral bone to be too restrictive, limiting our interpretation of sources of biological variation. Here, we advocate for the use of the termectochondralbone to describe bone that originates from an endochondral model but is directed in its subsequent growth by membranes and other fascial attachments. Growth of the alisphenoid and orbitosphenoid are described as two examples of ectochondral bone, influenced in their shape primarily by the surrounding soft tissues. Ectochondral bone may be an ideal mechanism for rapidly evolving new phenotypes. Instead of evolving novelties by altering morphology of the cartilage template, novel features may be formed by ectochondral ossification, a more direct and rapid mode of osteogenesis than that of the cartilage template.more » « less
- 
            null (Ed.)The lower jaw of the holotype of Adalatherium hui, from the Late Cretaceous of Madagascar, is the most complete yet known for a gondwanatherian mammal. It reveals for the first time the morphology of the character-rich ascending ramus of the dentary in a gondwanatherian. Each half of the lower jaw is composed of only one bone, the dentary, which is short and deep and houses only five teeth: an enlarged, procumbent incisor and four postcanine teeth. In comparable parts of its anatomy, the dentary of Adalatherium is strikingly similar to that of Sudamerica but differs slightly from that of Galulatherium (conformation anterior to first postcanine, mental foramen position), the only two other gondwanatherians represented by complete horizontal rami. Among other Mesozoic mammaliaform taxa, the dentary of Adalatherium is most similar to those of the largely Laurasian group Multituberculata, most notably in absence of postdentary trough and Meckelian sulcus; presence of short, deep dentary with sizable diastema and articulating with squamosal via mediolaterally narrow condyle that continues onto posterior surface (i.e., no distinct peduncle); possession of much reduced dentition; absence of angular process; possession of large pterygoid fossa and pterygoid shelf, ventral surface of which is flat; absence of coronoid bone; and possession of unfused mandibular symphysis. Most of these features are clearly derived and stand in stark contrast to the much more plesiomorphic morphology exhibited by the lower jaw of the haramiyaviid Haramiyavia. The lower jaws of euharamiyidans, although derived in their own right, are also relatively plesiomorphic.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
