SUMMARY Single-cell analysis has transformed our understanding of cellular diversity, offering insights into complex biological systems. Yet, manual data processing in single-cell studies poses challenges, including inefficiency, human error, and limited scalability. To address these issues, we propose the automated workflowcellSight, which integrates high-throughput sequencing in a user-friendly platform. By automating tasks like cell type clustering, feature extraction, and data normalization,cellSightreduces researcher workload, promoting focus on data interpretation and hypothesis generation. Its standardized analysis pipelines and quality control metrics enhance reproducibility, enabling collaboration across studies. Moreover,cellSight’s adaptability supports integration with emerging technologies, keeping pace with advancements in single-cell genomics.cellSightaccelerates discoveries in single-cell biology, driving impactful insights and clinical translation. It is available with documentation and tutorials athttps://github.com/omicsEye/cellSight.
more »
« less
Introducing “ The Integrator ”: A novel technique to monitor environmental flow systems
Abstract We introduce “The Integrator,” a novel technique to quantify transport and reaction metrics commonly used to characterize flow systems. This development consists of two products: (1)The Integratorsampling device and (2) its supporting mathematical framework, which is compatible with semi‐continuous sensor data. The use ofThe Integratordevice simplifies the logistics of sample collection and greatly reduces the number of samples needed, making it ideal to characterize systems that are: (1) difficult to access, (2) large and thus intractable or highly heterogeneous, and (3) highly instrumented otherwise but where a more holistic, mechanistic understanding may be gained by monitoring one or more currently untracked elements. We tested and validatedThe Integratortechnique using experimental data collected from a heart rate monitor (high‐quality, high‐frequency data in response to known excitation events) and solute tracer experiments conducted in two contrasting (fourth and seventh order) rivers. In theSupporting Information, we provide details concerning the design ofThe Integratordevice used in our field case studies and provide insight into potential improvements. Despite our case studies focus on the analysis of conservative and reactive transport of solutes in rivers, the principles behindThe Integratortechnique can be used to monitor water quality in hyporheic zones, aquifers, wetlands, swamps, karsts, oceans, wastewater treatment plants, pipe networks, and air quality. Furthermore, special arrangements ofIntegratordevices can be used to gather data at spatial and temporal resolutions that are currently unattainable due to high transportation and/or personnel costs.
more »
« less
- PAR ID:
- 10460287
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography: Methods
- Volume:
- 17
- Issue:
- 7
- ISSN:
- 1541-5856
- Page Range / eLocation ID:
- p. 415-427
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reliable studies of the long-term dynamics of planetary systems require numerical integrators that are accurate and fast. The challenge is often formidable because the chaotic nature of many systems requires relative numerical error bounds at or close to machine precision (∼10−16, double-precision arithmetic); otherwise, numerical chaos may dominate over physical chaos. Currently, the speed/accuracy demands are usually only met by symplectic integrators. For example, the most up-to-date long-term astronomical solutions for the solar system in the past (widely used in, e.g., astrochronology and high-precision geological dating) have been obtained using symplectic integrators. However, the source codes of these integrators are unavailable. Here I present the symplectic integratororbitN(lean version 1.0) with the primary goal of generating accurate and reproducible long-term orbital solutions for near-Keplerian planetary systems (here the solar system) with a dominant massM0. Among other features,orbitN-1.0includesM0’s quadrupole moment, a lunar contribution, and post-Newtonian corrections (1PN) due toM0(fast symplectic implementation). To reduce numerical round-off errors, Kahan compensated summation was implemented. I useorbitNto provide insight into the effect of various processes on the long-term chaos in the solar system. Notably, 1PN corrections have the opposite effect on chaoticity/stability on a 100 Myr versus Gyr timescale. For the current application,orbitNis about as fast as or faster (factor 1.15–2.6) than comparable integrators, depending on hardware.11The orbitN source code (C) is available athttp://github.com/rezeebe/orbitN.more » « less
-
Abstract The spectral model turbulence analysis technique is widely used to derive kinetic energy dissipation rates of turbulent structures (ɛ) from different in situ measurements in the Earth's atmosphere. The essence of this method is to fit a model spectrum to measured spectra of velocity or scalar quantity fluctuations and thereby to deriveɛonly from wavenumber dependence of turbulence spectra. Owing to the simplicity of spectral model of Heisenberg (1948),https://doi.org/10.1007/bf01668899its application dominates in the literature. Making use of direct numerical simulations which are able to resolve turbulence spectra down to the smallest scales in dissipation range, we advance the spectral model technique by quantifying uncertainties for two spectral models, the Heisenberg (1948),https://doi.org/10.1007/bf01668899and the Tatarskii (1971) model, depending on (a) resolution of measurements, (b) stage of turbulence evolution, (c) model used. We show that the model of Tatarskii (1971) can yield more accurate results and reveals higher sensitivity to the lowestɛ‐values. This study shows that the spectral model technique can reliably deriveɛif measured spectra only resolve half‐decade of power change within the viscous (viscous‐convective) subrange. In summary, we give some practical recommendations on how to derive the most precise and detailed turbulence dissipation field from in situ measurements depending on their quality. We also supply program code of the spectral models used in this study in Python, IDL, and Matlab.more » « less
-
Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.more » « less
-
Champion, Patricia A (Ed.)ABSTRACT Tuberculosis is caused by the bacteriumMycobacterium tuberculosis(Mtb). While eukaryotic species employ several specialized RNA polymerases (Pols) to fulfill the RNA synthesis requirements of the cell, bacterial species use a single RNA polymerase (RNAP). To contribute to the foundational understanding of how Mtb and the related non-pathogenic mycobacterial species,Mycobacterium smegmatis(Msm), perform the essential function of RNA synthesis, we performed a series ofin vitrotranscription experiments to define the unique enzymatic properties of Mtb and Msm RNAPs. In this study, we characterize the mechanism of nucleotide addition used by these bacterial RNAPs with comparisons to previously characterized eukaryotic Pols I, II, and III. We show that Mtb RNAP and Msm RNAP demonstrate similar enzymatic properties and nucleotide addition kinetics to each other but diverge significantly from eukaryotic Pols. We also show that Mtb RNAP and Msm RNAP uniquely bind a nucleotide analog with significantly higher affinity than canonical nucleotides, in contrast to eukaryotic RNA polymerase II. This affinity for analogs may reveal a vulnerability for selective inhibition of the pathogenic bacterial enzyme.IMPORTANCETuberculosis, caused by the bacteriumMycobacterium tuberculosis(Mtb), remains a severe global health threat. The World Health Organization (WHO) has reported that tuberculosis is second only to COVID-19 as the most lethal infection worldwide, with more annual deaths than HIV and AIDS (WHO.int). The first-line treatment for tuberculosis, Rifampin (or Rifampicin), specifically targets the Mtb RNA polymerase. This drug has been used for decades, leading to increased numbers of multi-drug-resistant infections (Stephanie,et al). To effectively treat tuberculosis, there is an urgent need for new therapeutics that selectively target vulnerabilities of the bacteria and not the host. Characterization of the differences between Mtb enzymes and host enzymes is critical to inform these ongoing drug design efforts.more » « less
An official website of the United States government
