skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aperture‐Synthesis Radar Imaging With Compressive Sensing for Ionospheric Research
Abstract Inverse methods involving compressive sensing are tested in the application of two‐dimensional aperture‐synthesis imaging of radar backscatter from field‐aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresholding algorithm, and orthogonal matching pursuit (OMP) with a wavelet basis in the evaluation. These methods are compared with two more conventional optimization methods rooted in entropy maximization (MaxENT) and adaptive beamforming (linearly constrained minimum variance or often “Capon's Method.”) Synthetic data corresponding to an extended ionospheric radar target are considered. We find that MaxENT outperforms the other methods in terms of its ability to recover imagery of an extended target with broad dynamic range. Fast iterative shrinkage thresholding algorithm performs reasonably well but does not reproduce the full dynamic range of the target. It is also the most computationally expensive of the methods tested. OMP is very fast computationally but prone to a high degree of clutter in this application. We also point out that the formulation of MaxENT used here is very similar to OMP in some respects, the difference being that the former reconstructs the logarithm of the image rather than the image itself from basis vectors extracted from the observation matrix. MaxENT could in that regard be considered a form of compressive sensing.  more » « less
Award ID(s):
1732209
PAR ID:
10460448
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Radio Science
Volume:
54
Issue:
6
ISSN:
0048-6604
Format(s):
Medium: X Size: p. 503-516
Size(s):
p. 503-516
Sponsoring Org:
National Science Foundation
More Like this
  1. This work attempts to recover digital signals from a few stochastic samples in time domain. The target signal is the linear combination of one-dimensional complex sine components with R different but continuous frequencies. These frequencies control the continuous values in the domain of normalized frequency [0, 1), contrary to the previous research into compressed sensing. To recover the target signal, the problem was transformed into the completion of a low-rank structured matrix, drawing on the linear property of the Hankel matrix. Based on the completion of the structured matrix, the authors put forward a feasible-point algorithm, analyzed its convergence, and speeded up the convergence with the fast iterative shrinkage-thresholding (FIST) algorithm. The initial algorithm and the speed up strategy were proved effective through repeated numerical simulations. The research results shed new lights on the signal recovery in various fields. 
    more » « less
  2. Summary In this paper, we propose an efficient numerical scheme for solving some large‐scale ill‐posed linear inverse problems arising from image restoration. In order to accelerate the computation, two different hidden structures are exploited. First, the coefficient matrix is approximated as the sum of a small number of Kronecker products. This procedure not only introduces one more level of parallelism into the computation but also enables the usage of computationally intensive matrix–matrix multiplications in the subsequent optimization procedure. We then derive the corresponding Tikhonov regularized minimization model and extend the fast iterative shrinkage‐thresholding algorithm (FISTA) to solve the resulting optimization problem. Because the matrices appearing in the Kronecker product approximation are all structured matrices (Toeplitz, Hankel, etc.), we can further exploit their fast matrix–vector multiplication algorithms at each iteration. The proposed algorithm is thus calledstructuredFISTA (sFISTA). In particular, we show that the approximation error introduced by sFISTA is well under control and sFISTA can reach the same image restoration accuracy level as FISTA. Finally, both the theoretical complexity analysis and some numerical results are provided to demonstrate the efficiency of sFISTA. 
    more » « less
  3. he Compressive Sensing (CS) framework has demonstrated improved acquisition efficiency on a variety of clinical applications. Of interest to this work is Reflectance Confocal Microscopy (RCM), where CS can influence a drastic reduction in instrumentation complexity and image acquisition times. However, CS introduces the disadvantage of requiring a time consuming and computationally intensive process for image recovery. To mitigate this, the current document details our preliminary work on expanding a Deep-Learning architecture for the acquisition and fast recovery of RCM images using CS. We show preliminary recoveries of RCM images of both a synthetic target and heterogeneous skin tissue using a state-of-the-art network architecture from compressive measurements at various undersampling rates. In addition, we propose an application-specific addition to an established network architecture, and evaluate its ability to further increase the accuracy of recovered CS RCM images and remove visual artifacts. Our initial results show that it is possible to recover compressively sampled images at near-real time rates with comparable quality to established computationally intensive and time-consuming optimization-based methods common in CS applications 
    more » « less
  4. Glow discharge optical emission spectroscopy elemental mapping (GDOES EM), enabled by spectral imaging strategies, is an advantageous technique for direct multi-elemental analysis of solid samples in rapid timeframes. Here, a single-pixel, or point scan, spectral imaging system based on compressed sensing image sampling, is developed and optimized in terms of matrix density, compression factor, sparsifying basis, and reconstruction algorithm for coupling with GDOES EM. It is shown that a 512 matrix density at a compression factor of 30% provides the highest spatial fidelity in terms of the peak signal-to-noise ratio (PSNR) and complex wavelet structural similarity index measure (cw-SSIM) while maintaining fast measurement times. The background equivalent concentration (BEC) of Cu I at 510.5 nm is improved when implementing the discrete wavelet transform (DWT) sparsifying basis and Two-step Iterative Shrinking/Thresholding Algorithm for Linear Inverse Problems (TwIST) reconstruction algorithm. Utilizing these optimum conditions, a GDOES EM of a flexible, etched-copper circuit board was then successfully demonstrated with the compressed sensing single-pixel spectral imaging system (CSSPIS). The newly developed CSSPIS allows taking advantage of the significant cost-efficiency of point-scanning approaches (>10× vs. intensified array detector systems), while overcoming (up to several orders of magnitude) their inherent and substantial throughput limitations. Ultimately, it has the potential to be implemented on readily available commercial GDOES instruments by adapting the collection optics. 
    more » « less
  5. Two-photon calcium imaging provides large-scale recordings of neuronal activities at cellular resolution. A robust, automated and high-speed pipeline to simultaneously segment the spatial footprints of neurons and extract their temporal activity traces while decontaminating them from background, noise and overlapping neurons is highly desirable to analyse calcium imaging data. Here we demonstrate DeepCaImX, an end-to-end deep learning method based on an iterative shrinkage-thresholding algorithm and a long short-term memory neural network to achieve the above goals altogether at a very high speed and without any manually tuned hyperparameter. DeepCaImX is a multi-task, multi-class and multi-label segmentation method composed of a compressed sensing-inspired neural network with a recurrent layer and fully connected layers. The neural network can simultaneously generate accurate neuronal footprints and extract clean neuronal activity traces from calcium imaging data. We trained the neural network with simulated datasets and benchmarked it against existing state-of-the-art methods with in vivo experimental data. DeepCaImX outperforms existing methods in the quality of segmentation and temporal trace extraction as well as processing speed. DeepCaImX is highly scalable and will benefit the analysis of mesoscale calcium imaging. 
    more » « less