skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating and Visualizing the Economic Impact of Commercial Districts Due to an Electric Power Network Disruption
Abstract Critical infrastructure networks enable social behavior, economic productivity, and the way of life of communities. Disruptions to these cyber–physical–social networks highlight their importance. Recent disruptions caused by natural phenomena, including Hurricanes Harvey and Irma in 2017, have particularly demonstrated the importance of functioning electric power networks. Assessing the economic impact (EI) of electricity outages after a service disruption is a challenging task, particularly when interruption costs vary by the type of electric power use (e.g., residential, commercial, industrial). In contrast with most of the literature, this work proposes an approach to spatially evaluate EIs of disruptions to particular components of the electric power network, thus enabling resilience‐based preparedness planning from economic and community perspectives. Our contribution is a mix‐method approach that combines EI evaluation, component importance analysis, and GIS visualization for decision making. We integrate geographic information systems and an economic evaluation of sporadic electric power outages to provide a tool to assist with prioritizing restoration of power in commercial areas that have the largest impact. By making use of public data describing commercial market value, gross domestic product, and electric area distribution, this article proposes a method to evaluate the EI experienced by commercial districts. A geospatial visualization is presented to observe and compare the areas that are more vulnerable in terms of EI based on the areas covered by each distribution substation. Additionally, a heat map is developed to observe the behavior of disrupted substations to determine the important component exhibiting the highest EI. The proposed resilience analytics approach is applied to analyze outages of substations in the boroughs of New York City.  more » « less
Award ID(s):
1635813
PAR ID:
10460487
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Risk Analysis
Volume:
39
Issue:
9
ISSN:
0272-4332
Page Range / eLocation ID:
p. 2032-2053
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Iliadis, L; Maglogiannis, I; Kyriacou, E; Jayne, C (Ed.)
    Weather-related power disruptions present significant challenges to public infrastructure, societal well-being, and the distribution grid. Predicting outage durations in distribution grids is another challenge compared to transmission line outage durations due to distribution networks’ complexity and finer granularity. While forecasting forced power outages is crucial, accurately estimating their duration is essential for timely response and mitigation measures. This study introduces the Spatiotemporal Multiplex Network (SMN-WVF), a methodology designed to predict power outage durations across varying lead times, tackling the difficulties posed by small, high-complexity spaces within distribution grids. SMN-WVF employs multiplex networks that incorporate multi-modal data across both time and space, including layers such as power outages, weather conditions, weather forecasts, vegetation, and distances between substations. We demonstrate the importance of incorporating additional layers of data sources as they are shown to help the model’s predictions through gradual improvement in the macro F1 score performance. 
    more » « less
  2. Natural disasters has been causing an increasing amount of economic losses in the past two decades. Natural disasters, such as hurricanes, winter storms, and wildfires, can cause severe damages to power systems, significantly impacting industrial, commercial, and residential activities, leading to not only economic losses but also inconveniences to people’s day-today life. Improving the resilience of power systems can lead to a reduced number of power outages during extreme events and is a critical goal in today’s power system operations. This paper presents a model for decentralized decision-making in power systems based on distributed optimization and implemented it on a modified RTS-96 test system, discusses the convergence of the problem, and compares the impact of decision-making mechanisms on power system resilience. Results show that a decentralized decision-making algorithm can significantly reduce power outages when part of the system is islanded during severe transmission contingencies. 
    more » « less
  3. Abstract The ability to withstand and recover from disruptions is essential for seaport energy systems, and in light of the growing push for decarbonization, incorporating clean energy sources has become increasingly imperative to ensure resilience. This paper proposes a resilience enhancement planning strategy for a seaport multi‐energy system that integrates various energy modalities and sources, including heating, cooling, hydrogen, solar, and wind power. The planning strategy aims to ensure the reliable operation of the system during contingency events, such as power outages, equipment failures, or extreme weather incidents. The proposed optimization model is designed as a mixed‐integer nonlinear programming formulation, in which McCormick inequalities and other linearization techniques are utilized to tackle the model nonlinearities. The model allocates fuel cell electric trucks (FCETs), renewable energy sources, hydrogen refueling stations, and remote control switches such that the system resilience is enhanced while incorporating natural‐gas‐powered combined cooling, heating, and power system to minimize the operation and unserved demand costs. The model considers various factors such as the availability of renewable energy sources, the demand for heating, cooling, electricity, and hydrogen, the operation of remote control switches to help system reconfiguration, the travel behaviour of FCETs, and the power output of FCETs via vehicle‐to‐grid interface. The numerical results demonstrate that the proposed strategy can significantly improve the resilience of the seaport multi‐energy system and reduce the risk of service disruptions during contingency scenarios. 
    more » « less
  4. The impacts of the COVID-19 pandemic and post-pandemic recovery in urban communities in the Arctic have been substantial, but their gendered aspects remain largely unknown. The goal of this study was to enhance the understanding of the gender-based impact on women in the urban areas of Alaska by exploring strengths and constraints to resilience in the social and economic domains of gender equality during and in the aftermath of the COVID-19 pandemic. Drawing on grounded theory methodology, this study is based on 29 in-depth, semi-structured interviews. The study methodology utilized a conceptual framework that integrated deficit-based and strength-based analytical perspectives. The paper implemented a voice-centered approach that drew on thematic interviews conducted with women in Anchorage and Nome. Alaska’s urban women demonstrated resilience rooted in self-empowerment and community caregiving. This was reflected in their critical re-evaluation of social and economic gendered structures, a reassessment of priorities in family and social relationships, and the mobilization of support networks. These acts of reflection and care transformed into processes of constructing new meanings of life during dramatic events and became a source of personal strength. The crisis also enabled a re-evaluation of entrenched gender dynamics and women’s ability to challenge gendered divisions in both the workplace and at home. Despite signs of resilience, the pandemic signified a setback for gender equality. It exacerbated pre-existing gender disparities within households, disrupted established pre-pandemic social support networks, increased unpaid domestic labor and a motherhood penalty, and deepened unemployment and income gaps. To further adapt to post-pandemic conditions, women need empowerment and greater representation in decision-making roles, which are critical to strengthening resilience in both the social and economic domains of gender equality. 
    more » « less
  5. null (Ed.)
    The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages. 
    more » « less