skip to main content


Title: The interaction between island geomorphology and environmental parameters drives Adélie penguin breeding phenology on neighboring islands near Palmer Station, Antarctica
Abstract

Despite many studies on Adélie penguin breeding phenology, understanding the drivers of clutch initiation dates (CIDs, egg 1 lay date) is limited or lacks consensus. Here, we investigated Adélie penguin CIDs over 25 years (1991–2016) on two neighboring islands, Torgersen and Humble (<1 km apart), in a rapidly warming region near Palmer Station, Antarctica. We found that sea ice was the primary large‐scale driver of CIDs and precipitation was a secondary small‐scale driver that fine‐tunes CID to island‐specific nesting habitat geomorphology. In general, CIDs were earlier (later) when the spring sea ice retreat was earlier (later) and when the preceding annual ice season was shorter (longer). Island‐specific effects related to precipitation and island geomorphology caused greater snow accumulation and delayed CIDs by ~2 days on Torgersen compared to Humble Island. When CIDs on the islands were similar, conditions were mild with less snow across breeding sites. At Torgersen Island, the negative relationship between CID and breeding success highlights detrimental effects of delayed breeding and/or snow on penguin fitness. Past phenological studies reported a relationship between air temperature and CID, assumed to be related to precipitation, but we found air temperature was more highly correlated to sea ice, revealing a misinterpretation of temperature effects. Finally, contrasting trends in CIDs based on temporal shifts in regional sea ice patterns revealed trends toward earlier CIDs (4–6 day advance) from 1979 to 2009 as the annual ice season shortened, and later CIDs (7–10 day delay) from 2010 to 2016 as the annual ice season lengthened. Adélie penguins tracked environmental conditions with flexible breeding phenology, but their life history remains vulnerable to subpolar weather conditions that can delay CIDs and decrease breeding success, especially on landscapes where geomorphology facilitates snow accumulation.

 
more » « less
NSF-PAR ID:
10460596
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
16
ISSN:
2045-7758
Page Range / eLocation ID:
p. 9334-9349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.

     
    more » « less
  2. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  3. Abstract

    Cycles of plant growth, termed phenology, are tightly linked to environmental controls. The length of time spent growing, bounded by the start and end of season, is an important determinant of the global carbon, water, and energy balance. Much focus has been given to global warming and consequences for shifts in growing‐season length in temperate regions. In conjunction with warming temperatures, altered precipitation regimes are another facet of climate change that have potentially larger consequences than temperature in dryland phenology globally. We experimentally manipulated incoming precipitation in a semiarid grassland for over a decade and recorded plant phenology at the daily scale for 7 years. We found precipitation to have a strong relationship with the timing of grass greenup and senescence but temperature had only a modest effect size on grass greenup. Pre‐season drought strongly resulted in delayed grass greenup dates and shorter growing‐season lengths. Spring and summer drought corresponded with earlier grass senescence, whereas higher precipitation accumulation over these seasons corresponded with delayed grass senescence. However, extremely wet conditions diluted this effect and caused a plateaued response. Deep‐rooted woody shrubs showed few effects of variable precipitation or temperature on phenology and displayed consistent annual phenological timing compared with grasses. Whereas rising temperatures have already elicited phenological consequences and extended growing‐season length for mid and high‐latitude ecosystems, precipitation change will be the major driver of phenological change in drylands that cover 40% of the land surface with consequences for the global carbon, water, and energy balance.

     
    more » « less
  4. Abstract The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed by melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ∼800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow cover on the cape since 2013 support this hypothesis. Increased δ13C values of penguin bone collagen further indicate a period of enhanced marine productivity during the penguin “optimum”, a warm period at 4000–2000 cal. yr B.P., perhaps related to an expansion of the Terra Nova Bay polynya with calving events of the Drygalski Ice Tongue. 
    more » « less
  5. Abstract

    Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range‐wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year‐to‐year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year‐to‐year growth rates, the ability to generate useful short‐term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short‐ and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.

     
    more » « less