skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long‐term (37 years) impacts of low‐head dams on freshwater shrimp habitat connectivity in northeastern Puerto Rico
Abstract Freshwater migratory shrimp in Puerto Rico depend on watershed connectivity, from stream headwaters to the ocean, to complete their life cycle. Moreover, shrimp populations in different watersheds are known to be connected in an island‐wide metapopulation. However, low‐head dams paired with water intakes on streams draining the El Yunque National Forest (EYNF) reduce streamflow. Here, we examine the cumulative effects of low‐head dams on shrimp habitat connectivity over 37 years across seven EYNF watersheds. We calculate total and refugia habitat connectivity (where refugia habitat is defined as predator‐free upstream reaches above waterfalls >5 m in height) at a monthly time step using a habitat‐weighted index of longitudinal riverine connectivity, which incorporates location and operation of water intakes and streamflow variability. Findings indicate total and refugia habitat connectivity declined over 37 years (by 27% and 16%, respectively) as additional water intakes have been placed in lower reaches of watersheds. On a monthly time step, the proportion of streamflow withdrawn has the largest effect on habitat connectivity, with the result that connectivity is ~17% lower during drought years than in nondrought years and ~7% lower in dry compared with wet seasons. Our analysis of this long‐term dataset highlights how cumulative effects of low‐head dams paired with water intakes have reduced shrimp habitat connectivity. These results underscore the importance of reducing existing withdrawal rates in EYNF, and locating intakes where effects on connectivity are minimal, if conserving shrimp habitat is a management objective.  more » « less
Award ID(s):
1831952
PAR ID:
10460625
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
River Research and Applications
Volume:
35
Issue:
7
ISSN:
1535-1459
Page Range / eLocation ID:
p. 1034-1043
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Large dams are a leading cause of river ecosystem degradation. Although dams have cumulative effects as water flows downstream in a river network, most flow alteration research has focused on local impacts of single dams. Here we examined the highly regulated Colorado River Basin (CRB) to understand how flow alteration propagates in river networks, as influenced by the location and characteristics of dams as well as the structure of the river network—including the presence of tributaries. We used a spatial Markov network model informed by 117 upstream‐downstream pairs of monthly flow series (2003–2017) to estimate flow alteration from 84 intermediate‐to‐large dams representing >83% of the total storage in the CRB. Using Least Absolute Shrinkage and Selection Operator regression, we then investigated how flow alteration was influenced by local dam properties (e.g., purpose, storage capacity) and network‐level attributes (e.g., position, upstream cumulative storage). Flow alteration was highly variable across the network, but tended to accumulate downstream and remained high in the main stem. Dam impacts were explained by network‐level attributes (63%) more than by local dam properties (37%), underscoring the need to consider network context when assessing dam impacts. High‐impact dams were often located in sub‐watersheds with high levels of native fish biodiversity, fish imperilment, or species requiring seasonal flows that are no longer present. These three biodiversity dimensions, as well as the amount of dam‐free downstream habitat, indicate potential to restore river ecosystems via controlled flow releases. Our methods are transferrable and could guide screening for dam reoperation in other highly regulated basins. 
    more » « less
  2. ABSTRACT Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, in snow‐dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non‐karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large fractures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly fractured bedrock, or porous media bedrock grains. A well‐connected karst aquifer will discharge a large portion of its accumulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydrologic records of gaged watersheds with exposed or near‐surface carbonate layers accounting for > 30% of their drainage area. In western snow‐dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and flow time series shows low‐flow volume is strongly related to karst aquifer conditions and winter precipitation when compared to low‐flow volumes present in non‐karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of normalised streamflow and cumulative precipitation in karst watersheds show that low‐flow conditions are highly dependent on the preceding winter precipitation and streamflow in both wet and dry periods. In non‐karst watersheds, increased precipitation primarily impacts high‐flow, spring runoff volumes with no clear relationship to low‐flow periods. When comparing cumulative streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential filling and draining of large amounts of karst storage, whereas non‐karst watersheds demonstrate a more stable storage regime. Communities in many western US watersheds are dependent on snow‐dominated karst watersheds for their water supply. This analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these watersheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help manage water supplies. 
    more » « less
  3. Abstract Dams are often removed from rivers to restore habitat connectivity for biota such as fish. Removal of inland dams is well studied in temperate mainland rivers but this approach has been little studied in fish assemblages in islands, tropic systems, or for dams near the mouth of the river. In Puerto Rico, one of the most intensively dammed territories in the world, all native river fishes migrate between fresh water and the sea, and previous work shows that these movements are impeded or blocked by dams.Fish assemblages were compared before and after removal of the Cambalache dam, a porous, low‐head structure near the mouth of the Río Grande de Arecibo, as well as in two other rivers in western Puerto Rico, one with a similarly sized and positioned dam, and one reference river without artificial barriers. Fish were sampled using backpack electrofishing on 39 occasions during 2017–2019, including seven samples collected after removal of the Cambalache dam, at four to six sites per river.Fish assemblages upstream from dams were poorer in species, and species richness showed a marginal tendency (p = 0.0515) to increase upstream of the Cambalache dam 3 months after its removal. The two small lowland dams studied herein limited the upstream extent of marine species, which recolonised upstream sites of the Río Grande de Arecibo after removal of the Cambalache dam. An estimate of relative density (catch per unit effort) of common native freshwater species was higher above these two dams, and decreased at upstream sites after removal of the Cambalache dam. The estimated relative density of a native freshwater species that is of conservation concern, the American eel (Anguilla rostrata), was reduced above dams, and increased upstream of the former Cambalache dam after its removal.In extensive surveys conducted previously in Puerto Rico, sampling was concentrated higher in the catchment, and native fishes were more common and abundant below than above dams. The present work was conducted near the river mouth, and opposite results were observed. These contrasting results suggest that the effects of dams (or dam removal) on fish assemblages vary along the river gradient, although data from other systems are needed to confirm this.The present results suggest low‐head dam removal to be a viable method of restoring connectivity in fish assemblages in lower reaches of rivers in Puerto Rico and, potentially, other tropical islands. Removal of dams near the mouth of the river appears to be of particular benefit to marine fish species that use lower river reaches. 
    more » « less
  4. Abstract Instream barriers, such as dams, culverts, and diversions, alter hydrologic processes and aquatic habitat. Removing uneconomical and aging instream barriers is increasingly used for river restoration. Historically, selection of barrier removal projects used score‐and‐rank techniques, ignoring cumulative change and the spatial structure of stream networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. Here, a dual‐objective optimization model identifies barriers to remove that maximize connected aquatic habitat and minimize water scarcity. Aquatic habitat is measured using monthly average streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using economic penalty functions while a budget constraint specifies the money available to remove barriers. We demonstrate the approach using a case study in Utah's Weber Basin to prioritize removal of instream barriers for Bonneville cutthroat trout, while maintaining human water uses. Removing 54 instream barriers reconnects about 160 km of quality‐weighted habitat and costs approximately US$10 M. After this point, the cost‐effectiveness of removing barriers to connect river habitat decreases. The modeling approach expands barrier removal optimization methods by explicitly including both economic and environmental water uses. 
    more » « less
  5. Abstract. Watershed-scale stream temperature models are often one-dimensional because they require fewer data and are more computationally efficient than two- or three-dimensional models. However, one-dimensional models assume completely mixed reaches and ignore small-scale spatial temperature variability, which may create temperature barriers or refugia for cold-water aquatic species. Fine spatial- and temporal-resolution stream temperature monitoring provides information to identify river features with increased thermal variability. We used distributed temperature sensing (DTS) to observe small-scale stream temperature variability, measured as a temperature range through space and time, within two 400 m reaches in summer 2015 in Nevada's East Walker and main stem Walker rivers. Thermal infrared (TIR) aerial imagery collected in summer 2012 quantified the spatial temperature variability throughout the Walker Basin. We coupled both types of high-resolution measured data with simulated stream temperatures to corroborate model results and estimate the spatial distribution of thermal refugia for Lahontan cutthroat trout and other cold-water species. Temperature model estimates were within the DTS-measured temperature ranges 21 % and 70 % of the time for the East Walker River and main stem Walker River, respectively, and within TIR-measured temperatures 17 %, 5 %, and 5 % of the time for the East Walker, West Walker, and main stem Walker rivers, respectively. DTS, TIR, and modeled stream temperatures in the main stem Walker River nearly always exceeded the 21 ∘C optimal temperature threshold for adult trout, usually exceeded the 24 ∘C stress threshold, and could exceed the 28 ∘C lethal threshold for Lahontan cutthroat trout. Measured stream temperature ranges bracketed ambient river temperatures by −10.1 to +2.3 ∘C in agricultural return flows, −1.2 to +4 ∘C at diversions, −5.1 to +2 ∘C in beaver dams, and −4.2 to 0 ∘C at seeps. To better understand the role of these river features on thermal refugia during warm time periods, the respective temperature ranges were added to simulated stream temperatures at each of the identified river features. Based on this analysis, the average distance between thermal refugia in this system was 2.8 km. While simulated stream temperatures are often too warm to support Lahontan cutthroat trout and other cold-water species, thermal refugia may exist to improve habitat connectivity and facilitate trout movement between spawning and summer habitats. Overall, high-resolution DTS and TIR measurements quantify temperature ranges of refugia and augment process-based modeling. 
    more » « less