skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Millennial‐Scale Age Offsets Within Fossil Assemblages: Result of Bioturbation Below the Taphonomic Active Zone and Out‐of‐Phase Production
Abstract Oceanographic and evolutionary inferences based on fossil assemblages can be obscured by age offsets among co‐occurring shells (i.e., time averaging). To identify the contributions of sedimentation, mixing, durability, and production to within‐ and between‐species age offsets, we analyze downcore changes in the age‐frequency distributions of two bivalves on the California shelf. Within‐species age offsets are ~50–2,000 years forParvilucinaand ~2,000–4,000 years forNuculanaand between‐species offsets are 1,000–4,000 years within the 10‐ to 25‐cm‐thick stratigraphic units. Shells within the top 20–24 cm of the seabed are age‐homogeneous, defining the thickness of the surface completely‐mixed layer (SML), and have strongly right‐skewed age‐frequency distributions, indicating fast shell disintegration. The SML thus coincides with the taphonomic active zone and extends below the redoxcline at ~10 cm. Shells >2,000–3,000 years old occurring within the SML have been exhumed from subsurface shell‐rich units rich where disintegration is negligible (sequestration zone, SZ). Burrowers (callianassid shrimps) penetrate 40–50 cm below the seafloor into this SZ. The millennial offsets within each increment result from the advection of old shells from the SZ, combined with an out‐of‐phase change in species production. Age unmixing reveals thatParvilucinawas abundant during the transgressive phase, rare during the highstand phase, and increased steeply in the twentieth century in response to wastewater.Nuculanawas abundant during the highstand phase and has declined over the past two centuries. This sequestration‐exhumation dynamic accentuates age offsets by allowing both the persistence of shells below the SML and their later admixing with younger shells within the SML.  more » « less
Award ID(s):
1855381
PAR ID:
10460649
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
34
Issue:
6
ISSN:
2572-4517
Page Range / eLocation ID:
p. 954-977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bioturbation can increase time averaging by downward and upward movements of young and old shells within the entire mixed layer and by accelerating the burial of shells into a sequestration zone (SZ), allowing them to bypass the uppermost taphonomically active zone (TAZ). However, bioturbation can increase shell disintegration concurrently, neutralizing the positive effects of mixing on time averaging. Bioirrigation by oxygenated pore-water promotes carbonate dissolution in the TAZ, and biomixing itself can mill shells weakened by dissolution or microbial maceration, and/or expose them to damage at the sediment–water interface. Here, we fit transition rate matrices to bivalve age–frequency distributions from four sediment cores from the southern California middle shelf (50–75 m) to assess the competing effects of bioturbation on disintegration and time averaging, exploiting a strong gradient in rates of sediment accumulation and bioturbation created by historic wastewater pollution. We find that disintegration covaries positively with mixing at all four sites, in accord with the scenario where bioturbation ultimately fuels carbonate disintegration. Both mixing and disintegration rates decline abruptly at the base of the 20- to 40-cm-thick, age-homogenized surface mixed layer at the three well-bioturbated sites, despite different rates of sediment accumulation. In contrast, mixing and disintegration rates are very low in the upper 25 cm at an effluent site with legacy sediment toxicity, despite recolonization by bioirrigating lucinid bivalves. Assemblages that formed during maximum wastewater emissions vary strongly in time averaging, with millennial scales at the low-sediment accumulation non-effluent sites, a centennial scale at the effluent site where sediment accumulation was high but bioturbation recovered quickly, and a decadal scale at the second high-sedimentation effluent site where bioturbation remained low for decades. Thus, even though disintegration rates covary positively with mixing rates, reducing postmortem shell survival, bioturbation has theneteffect of increasing the time averaging of skeletal remains on this warm-temperate siliciclastic shelf. 
    more » « less
  2. Abstract Time averaging of fossil assemblages determines temporal precision of paleoecological and geochronological inferences. Taxonomic differences in intrinsic skeletal durability are expected to produce temporal mismatch between co-occurring species, but the importance of this effect is difficult to assess due to lack of direct estimates of time averaging for many higher taxa. Moreover, burial below the taphonomic active zone and early diagenetic processes may alleviate taxonomic differences in disintegration rates in subsurface sediments. We compared time averaging across five phyla of major carbonate producers co-occurring in a sediment core from the northern Adriatic Sea shelf. We dated individual bivalve shells, foraminiferal tests, tests and isolated plates of irregular and regular echinoids, crab claws, and fish otoliths. In spite of different skeletal architecture, mineralogy, and life habit, all taxa showed very similar time averaging varying from ~1800 to ~3600 yr (interquartile age ranges). Thus, remains of echinoids and crustaceans—two groups with multi-elemental skeletons assumed to have low preservation potential—can still undergo extensive age mixing comparable to that of the co-occurring mollusk shells. The median ages of taxa differed by as much as ~3700 yr, reflecting species-specific timing of seafloor colonization during the Holocene transgression. Our results are congruent with sequestration models invoking taphonomic processes that minimize durability differences among taxa. These processes together with temporal variability in skeletal production can overrule the effects of durability in determining temporal resolution of multi-taxic fossil assemblages. 
    more » « less
  3. Abstract Understanding how time averaging changes during burial is essential for using Holocene and Anthropocene cores to analyze ecosystem change, given the many ways in which time averaging affects biodiversity measures. Here, we use transition-rate matrices to explore how the extent of time averaging changes downcore as shells transit through a taphonomically complex mixed layer into permanently buried historical layers: this is a null model, without any temporal changes in rates of sedimentation or bioturbation, to contrast with downcore patterns that might be produced by human activity. Assuming stochastic burial and exhumation movements of shellsbetweenincrements within the mixed layer and stochastic disintegrationwithinincrements, we find that almost all combinations of net sedimentation, mixing, and disintegration produce a downcore increase in time averaging (interquartile range [IQR] of shell ages), this trend is typically associated with a decrease in kurtosis and skewness and by a shift from right-skewed to symmetrical age distributions. A downcore increase in time averaging is thus the null expectation wherever bioturbation generates an internally structured mixed layer (i.e., a surface, well-mixed layer is underlain by an incompletely mixed layer): under these conditions, shells are mixed throughout the entire mixed layer at a slower rate than they are buried below it by sedimentation. This downcore trend created by mixing is further amplified by the downcore decline in disintegration rate. We find that transition-rate matrices accurately reproduce the downcore changes in IQR, skewness, and kurtosis observed in bivalve assemblages from the southern California shelf. The right-skewed shell age-frequency distributions typical of surface death assemblages—the focus of most actualistic research—might be fossilized under exceptional conditions of episodic anoxia or sudden burial. However, such right-skewed assemblages will typically not survive transit through the surface mixed layer into subsurface historical layers: they are geologically transient. The deep-time fossil record will be dominated instead by the more time-averaged assemblages with weakly skewed age distributions that form in the lower parts of the mixed layer. 
    more » « less
  4. Abstract Constraining radiocarbon ( 14 C) reservoir age offsets is critical to deriving accurate calendar-age chronologies from 14 C dating of materials which did not draw carbon directly from the atmosphere. The application of 14 C dating to such materials is severely limited in hydrologically sensitive environments like the Black Sea because of the difficulty to quantify reservoir age offsets, which can vary quickly and significantly through time, due to the dynamics of the biogeochemical cycling of carbon. Here we reconstruct 14 C reservoir age offsets (R shell-atm ) of Holocene bivalve shells from the coastal Black Sea relatively to their contemporaneous atmosphere. We show that the 14 C reservoir age offset and the stable carbon isotope composition of bivalve shells are linearly correlated in this region. From a biogeochemical standpoint, this suggests that inorganic stable carbon isotope and 14 C compositions of Black Sea coastal waters are controlled by the balance between autochthonous primary productivity and heterotrophic respiration of allochthonous pre-aged terrestrial organic matter supplied by rivers. This provided an important implication for Black Sea geochronology as the reservoir age offset of 14 C-dated bivalve shell can be inferred from its stable carbon isotope composition. Our results provide a fundamental and inexpensive geochemical tool which will considerably improve the accuracy of Holocene calendar age chronologies in the Black Sea. 
    more » « less
  5. ABSTRACT Taphonomic indicators are often used to assess time-since-death of skeletal remains. These indicators frequently have limited accuracy, resulting in the reliance of other methodologies to age remains. Arctica islandica, commonly known as the ocean quahog, is a relatively widespread bivalve in the North Atlantic, with an extended lifespan that often exceeds two hundred years; hence, their shells are often studied to evaluate climate change over time. This report evaluates taphonomic age using 117 A. islandica shells collected from the Mid-Atlantic Bight offshore of the Delmarva Peninsula with radiocarbon dates extending from 60–4,400 cal years BP. These shells had varying degrees of taphonomic alteration produced by discoloration and degradation of periostracum. To determine if a relationship exists between taphonomic condition and time-since-death, radiocarbon ages were compared with the amount of remaining periostracum and type of discoloration. Old shells (individuals that died long ago) were discolored orange with no periostracum while younger shells (individuals that died more recently) had their original color, with some periostracum. Both the disappearance of periostracum and appearance of discoloration followed a logistic process, with 50% of shells devoid of periostracum and 50% discolored in about 1,000 years. The logistic form of long-term taphonomic processes degrading shell condition is first reported here, as are the longest time series for taphonomic processes in death assemblages within the Holocene record. This relationship can be utilized for triage when deciding what shells to age from time-averaged assemblages, permitting more efficient application of expensive methods of aging such as radiocarbon dating. 
    more » « less