skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging Subduction Beneath Mount St. Helens: Implications for Slab Dehydration and Magma Transport
Abstract Mount St. Helens (MSH) is anomalously 35–50 km trenchward of the main Cascade arc. To elucidate the source of this anomalous forearc volcanism, the teleseismic‐scattered wavefield is used to image beneath MSH with a dense broadband seismic array. Two‐dimensional migration shows the subducting Juan de Fuca crust to at least 80‐km depth, with its surface only 68 ± 2 km deep beneath MSH. Migration and three‐dimensional stacking reveal a clear upper‐plate Moho east of MSH that disappears west of it. This disappearance is a result of both hydration of the mantle wedge and a westward change in overlying crust. Migration images also show that the subducting plate continues without break along strike. Combined with low temperatures inferred for the mantle wedge, this geometry greatly limits possible source regions for mantle melts that contribute to MSH magmas and requires lateral migration over large distances.  more » « less
Award ID(s):
1444275
PAR ID:
10460680
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
6
ISSN:
0094-8276
Page Range / eLocation ID:
p. 3163-3171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mount St. Helens (MSH) lies in the forearc of the Cascades where conditions should be too cold for volcanism. To better understand thermal conditions and magma pathways beneath MSH, data from a dense broadband array are used to produce high‐resolution tomographic images of the crust and upper mantle. Rayleigh‐wave phase‐velocity maps and three‐dimensional images of shear velocity (Vs), generated from ambient noise and earthquake surface waves, show that west of MSH the middle‐lower crust is anomalously fast (3.95 ± 0.1 km/s), overlying an anomalously slow uppermost mantle (4.0–4.2 km/s). This combination renders the forearc Moho weak to invisible, with crustal velocity variations being a primary cause; fast crust is necessary to explain the absent Moho. Comparison with predicted rock velocities indicates that the fast crust likely consists of gabbros and basalts of the Siletzia terrane, an accreted oceanic plateau. East of MSH where magmatism is abundant, middle‐lower crustVsis low (3.45–3.6 km/s), consistent with hot and potentially partly molten crust of more intermediate to felsic composition. This crust overlies mantle with more typical wave speeds, producing a strong Moho. The sharp boundary in crust and mantleVswithin a few kilometers of the MSH edifice correlates with a sharp boundary from low heat flow in the forearc to high arc heat flow and demonstrates that the crustal terrane boundary here couples with thermal structure to focus lateral melt transport from the lower crust westward to arc volcanoes. 
    more » « less
  2. New Zealand's Hikurangi margin is known for recurring shallow slow slip, numerous forearc seeps, and a productive volcanic arc. Fluids derived from the subducting slab are implicated in these processes. However, prior studies lacked evidence of basic crustal structure of the slab, or of its water content that would allow an assessment of fluid budgets. We review several recent studies that place bounds on the fluid reservoirs within the subducting Hikurangi Plateau that could be released between the forearc and backarc regions. Subducting sediments are thickest (> 1 km) in the southern Hikurangi margin, where there is a unit of turbidites beneath the regional proto decollement. These subducting sediments begin draining near the deformation front, resulting in a 20-30 % loss of volumetric fluid content. In contrast, the central and northern Hikurangi margins lack a continuous unit of subducting sediment. Here, lenses of poorly drained sediment underthrust the forearc in the wakes of seamount collisions. The Hikurangi Plateau's crustal structure resembles normal oceanic crust with a doubled upper crust of basalt and diabase. Above this upper crust is a ~1.5 km thick unit of hydrated volcaniclastic conglomerates. Seamounts can locally increase the upper crust's thickness by an extra ~1-3 km, raising the amount of porous, altered volcanic material. Finally, P-wave velocity models of the slab's upper mantle show velocity changes that could indicate moderate differences in serpentinization. Active bend-faults that could circulate fluids to the upper mantle are sparse prior to subduction. However, upon subduction the upper mantle seismic velocities of the Hikurangi Plateau are significantly less in the north compared to the south, possibly due to enhanced slab faulting beneath the forearc. Separate thermo-petrologic models for the shallow forearc and deeper subduction system suggests that fluid release from volcaniclastic units and the thickened Hikurangi Plateau upper crust is expected to occur over a range of depths extending from ~12 km to ~130 km, providing fluids for onshore seep systems and hydrous melting of the mantle wedge, whereas dehydration of serpentinite is greatest beyond the arc front. Subducting sediments and volcaniclastic units are the most readily available source of fluids for shallow slow slip. 
    more » « less
  3. Abstract Volcanic arcs consist of many distinct vents that are ultimately fueled by the common melting processes in the subduction zone mantle wedge. Seismic imaging of crustal‐scale magmatic systems can provide insight into how melt is organized in the deep crust and eventually focused beneath distinct vents as it ascends and evolves. Here, we investigate the crustal‐scale structure beneath a section of the Cascades arc spanning four major stratovolcanoes: Mt. Hood, Mt. St. Helens (MSH), Mt. Adams (MA), and Mt. Rainier, based on ambient noise data from 234 seismographs. Simultaneous inversion of Rayleigh and Love wave dispersion constrains the isotropic shear velocity (Vs) and identifies radially anisotropic structures. IsotropicVsshows two sub‐parallel low‐Vszones (∼3.45–3.55 km/s) at ∼15–30 km depth with one connecting Mt. Rainier to MA, and another connecting MSH to Mt. Hood, which are interpreted as deep crustal magma reservoirs containing up to ∼2.5%–6% melt, assuming near‐equilibrium melt geometry. Negative radial anisotropy, from vertical fractures like dikes, is prevalent in this part of the Cascadia, but is interrupted by positive radial anisotropy, from subhorizontal features like sills, extending vertically beneath MA and Mt. Rainier at ∼10–30 km depth and weaker and west‐dipping positive anisotropy beneath MSH. The positive anisotropy regions are adjacent to rather than co‐located with the isotropic low‐Vsanomalies. Ascending melt that stalled and mostly crystallized in sills with possible compositional differences from the country rock may explain the near‐averageVsand positive radial anisotropy adjacent to the active deep crustal magma reservoirs. 
    more » « less
  4. Abstract Most great earthquakes on subduction zone plate boundaries have large coseismic slip concentrated along the contact between the subducting slab and the upper plate crust. On 4 March 2021, a magnitude 7.4 foreshock struck 1 hr 47 min before a magnitude 8.1 earthquake along the northern Kermadec island arc. The mainshock is the largest well‐documented underthrusting event along the ∼2,500‐km long Tonga‐Kermadec subduction zone. Using teleseismic, geodetic, and tsunami data, we find that all substantial coseismic slip in the mainshock is located along the mantle/slab interface at depths from 20 to 55 km, with the large foreshock nucleating near the down‐dip edge. Smaller foreshocks and most aftershocks are located up‐dip of the mainshock, where substantial prior moderate thrust earthquake activity had occurred. The upper plate crust is ∼17 km thick in northern Kermadec with only moderate‐size events along the crust/slab interface. A 1976 sequence withMWvalues of 7.9, 7.8, 7.3, 7.0, and 7.0 that spanned the 2021 rupture zone also involved deep megathrust rupture along the mantle/slab contact, but distinct waveforms exclude repeating ruptures. Variable waveforms for eight deep M6.9+ thrusting earthquakes since 1990 suggest discrete slip patches distributed throughout the region. The ∼300‐km long plate boundary in northern Kermadec is the only documented subduction zone region where the largest modeled interplate earthquakes have ruptured along the mantle/slab interface, suggesting that local frictional properties of the putatively hydrated mantle wedge may involve a dense distribution of Antigorite‐rich patches with high slip rate velocity weakening behavior in this locale. 
    more » « less
  5. Abstract Low‐angle subduction has been shown to have a profound impact on subduction processes. However, the mechanisms that initiate, drive, and sustain flat‐slab subduction are debated. Within all subduction zone systems, metamorphic dehydration reactions within the down‐going slab have been hypothesized to produce seismicity, and to produce water that fluxes melting of the asthenospheric wedge leading to arc magmatism. In this work, we examine the role hydration plays in influencing slab buoyancy and the geometry of the downgoing oceanic plate. When water is introduced to the oceanic lithosphere, it is incorporated into hydrous phases, which results in lowered rock densities. The net effect of this process is an increase in the buoyancy of the downgoing oceanic lithosphere. To better understand the role of water in low‐angle subduction settings, we model flat‐slab subduction in Alaska, where the thickened oceanic lithosphere of the Yakutat oceanic plateau is subducting beneath the continental lithosphere. In this work, we calculate the thermal conditions and stable mineral assemblages in the slab crust and mantle in order to assess the role that water plays in altering the density of the subducting slab. Our slab density results show that a moderate amount of hydration (1–1.5 wt% H2O) in the subducting crust and upper lithospheric mantle reduces slab density by 0.5%–0.8% relative to an anhydrous slab, and is sufficient to maintain slab buoyancy to 300–400 km from the trench. These models show that water is a viable factor in influencing the subduction geometry in Alaska, and is likely important globally. 
    more » « less